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Abstract. We consider the associated graded
⊕

k≥1 ΓkI/Γk+1I of the lower central series

I = Γ1I ⊃ Γ2I ⊃ Γ3I ⊃ · · · of the Torelli group I of a compact oriented surface. Its degree-

one part is well-understood by D. Johnson’s seminal works on the abelianization of the Torelli
group. The knowledge of the degree-two part (Γ2I/Γ3I)⊗Q with rational coefficients arises

from works of S. Morita on the Casson invariant and R. Hain on the Malcev completion of I.
Here, we prove that the abelian group Γ2I/Γ3I is torsion-free, and we describe it as a lattice
in a rational vector space. As an application, the group I/Γ3I is computed, and it is shown

to embed in the group of homology cylinders modulo the surgery relation of Y3-equivalence.
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1. Introduction

Let Σ be a compact, connected, oriented surface. Its mapping class group M := M(Σ) is
the group of isotopy classes of orientation-preserving homeomorphisms of Σ that restrict to the
identity on ∂Σ. Here, for simplicity, we assume that Σ has one boundary component and genus
g ≥ 3. The subgroup I := I(Σ) of M that acts trivially on the homology H := H1(Σ;Z) of
the surface is known as the Torelli group of Σ. It contains the subgroup K := K(Σ) that is
generated by Dehn twists along bounding simple closed curves, the latter being known as the
Johnson subgroup of Σ.

Johnson fully determined in [13] the abelianization Iab := I/[I, I] of the Torelli group. In
particular, he proved that Iab has non-trivial torsion (with only order-two elements), and that
its torsion-free abelianization Iabf := Iab

/
Tors(Iab) is canonically isomorphic to Λ3H through

the first Johnson homomorphism
τ1 : I −→ Λ3H,

which encodes the action of I on the second nilpotent quotient of π1(Σ). Since the kernel of τ1
coincides with the Johnson subgroup, we have Iabf = I/K or, equivalently, Tors(Iab) = K/[I, I].

Consider now the lower central series Γ1I ⊃ Γ2I ⊃ Γ3I ⊃ · · · of the Torelli group, which is
defined by Γ1I = I, Γ2I = [I, I], Γ3I = [I, [I, I]] and so on. Its associated graded

GrΓ I =
⊕
k≥1

ΓkI
Γk+1I

is a graded Lie Z-algebra, which is generated by its degree 1 part, namely by Iab. As a general
fact, the associated graded of the lower central series of a group is, with rational coefficients, the
same as the associated graded of the natural filtration on the Malcev Lie algebra of the group.

1
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In the case of the Torelli group, much more is known: in the fundamental work [17], Hain proved

that the degree-completion of
(
GrΓ I

)
⊗ Q is (non-canonically) isomorphic to the Malcev Lie

algebra of I and, furthermore, he identified the latter graded Lie Q-algebra in the following way.
Let HQ := H⊗Q and consider the free Lie Q-algebra Lie(Λ3HQ) generated by Λ3HQ. Clearly,

the map JQ defined by the composition

(1.1) Lie(Λ3HQ)
Lie(τ−1

1 )

≃
//

JQ

33
Lie(Iab ⊗Q) // //

(
GrΓ I

)
⊗Q

is surjective, so that the determination of
(
GrΓ I

)
⊗Q resumes at the computation of the ideal

of rational relations RQ := ker(JQ). Note that the conjugacy action of M on I induces an action

of the symplectic group Sp(HQ) on
(
GrΓ I

)
⊗Q, such that JQ is Sp(HQ)-equivariant. Here the

symplectic form ω on HQ is given by the homology intersection pairing. Then, it turns out that
the ideal RQ is generated by its degree 2 part RQ

2 for g ≥ 4 [17, 18]. Furthermore, for g ≥ 3, the

subspace RQ
2 can be described as the Sp(HQ)-submodule of Lie2(Λ

3HQ) ≃ Λ2(Λ3HQ) generated
by two explicit elements [17, 14]. Thus, using Morita’s works on the Casson invariant and the
second Johnson homomorphism [22, 23], one obtains an explicit description of

(Γ2I/Γ3I)⊗Q ≃ Λ2(Λ3HQ)/RQ
2 .

Besides, the subspace RQ
2 coincides with the kernel of a certain map B which is defined explicitly

on Λ2(Λ3HQ) in terms of contractions with ω: see equation (3.1) below for the exact definition.
In the sequel, we shall refer to B as the diagrammatic bracket since it corresponds in [15] to a
restriction of the Lie bracket of so-called “symplectic Jacobi diagrams”, and it gives rise there
to a diagrammatic description of (Γ2I/Γ3I)⊗Q.

In this paper, we are interested in the Z-module structure of GrΓ I, which (beyond its ratio-
nalization) seems to be largely unknown in degree greater than 1. A first step in this direction
is the following.

Theorem A. Let g ≥ 3. We have [I, [I, I]] = [I,K].

This is proved in Section 2 as follows. Firstly, by using Johnson’s descriptions [13] of the group
Iab and its subgroup K/[I, I], we observe that the triviality of the quotient [I,K]/[I, [I, I]]
follows from the nullity of two special elements (Lemma 2.3). This nullity is then ensured by
using some appropriate “Push” maps for surfaces related to Σ.

Theorem A has the following two consequences. On the one hand, the torsion of GrΓ1 I = Iab
does not “propagate” to higher-degree torsion elements in GrΓ I. (However, note that GrΓ I does
contain non-trivial torsion in any odd degree: see the forthcoming paper [27], which builds upon
results of [26] and [19]). On the other hand, the map (1.1) also exists with integral coefficients
in degree greater than 1:

(1.2) Lie≥2(Λ
3H)

Lie≥2(τ
−1
1 )

≃
//

J

44
Lie≥2(Iabf) // // GrΓ≥2 I

Consequently, we can consider the ideal of integral relations R := ker(J), where J is the above
map. Our next result, which is proved in Section 3, computes explicitly its degree 2 part R2.

Theorem B. Let g ≥ 3. We have R2 = ker(B) ∩ Λ2(Λ3H).

Of course, the inclusion R2 ⊂ ker(B) ∩ Λ2(Λ3H) follows from the above-mentioned identity

RQ
2 = ker(B) [15]: alternatively, this inclusion is a direct consequence of the relationship between

the homomorphism B and the pair (second Johnson homomorphism, Casson invariant) on [I, I],
which will be specified in Proposition 3.2. The proof of the converse inclusion (i.e., the fact that
any element of Λ2(Λ3H) with trivial diagrammatic bracket is a quadratic relation in the graded

Lie ring GrΓ I) constitutes the most technical part of this paper. In contrast with the above-

mentioned characterizations of RQ
2 which use the representation theory of Sp(HQ), our proof

of Theorem B is rather pedestrian and proceeds in two steps. First, we fix a symplectic basis
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S of H, and we produce an explicit finite generating system of ker(B) ∩ Λ2(Λ3H) under the
action of the subgroup of the integral symplectic group Sp(H) that stabilizes S ∪ (−S): see
Theorem 3.6. Second, we check that each of these generators defines a quadratic relation for
GrΓ I: one of the ingredients here is the “topological IHX relation” that has been identified by
Gervais and Habegger in [6].

Being isomorphic to a lattice in the Q-vector space Λ2(Λ3HQ)/ ker(B), the group Γ2I/Γ3I
turns out to be torsion-free. Another output of (the proof of) Theorem B is an explicit description
of the quadratic relations. Although it is known to be true with rational coefficients from the
above-mentioned work of Hain [17], the graded Lie Z-algebra GrΓ I may not be quadratically
presented (even for g large enough). In this hypothesis, it would still be necessary to determine
the relations in higher degrees.

In Section 4, we derive from Theorem A and Theorem B other consequences. (Actually,
the reader only interested in these applications of Theorem A and Theorem B, may skip the
detailed proofs of the latter, which are contained in §2.2-§2.3 and §3.2-§3.4 respectively, and
jump directly to Section 4.) The exact structure of the groups Γ2I/Γ3I, K/Γ3I and I/Γ3I is
obtained in Theorem 4.2 and Theorem 4.3. Note that we do not consider here the case of a
closed surface. Nonetheless, it is very likely that one could derive from our study similar results

for the same subquotients of the Torelli group of the surface ÛΣ that is obtained from Σ by gluing
a closed disk along ∂Σ. (We leave the study of the closed case, which is more technical, to a
future work.)

Finally, there are two fundamental problems about the lower central series of I in connection
with other filtrations, to which we can provide (in low degrees) a few new pieces of answer. On
the one hand, recall that the “Johnson filtration” M = M[0] ⊃ M[1] ⊃ M[2] ⊃ · · · consists of
the subgroups of the mapping class group acting trivially on the successive nilpotent quotients
of π1(Σ). On the Torelli group M[1] = I, this filtration is larger than the lower central series,
and the following questions arise.

Problem C. Determine the kernel and the image of the homomorphism

(1.3)
⊕
k≥1

ΓkI
Γk+1I

−→
⊕
k≥1

M[k]

M[k + 1]

from the associated graded of the lower central series of I to the associated graded of the Johnson
filtration of M.

Of course, the map (1.3) is very well-understood in degree k = 1 thanks to [13]. Subsequent
works [22, 30, 3] also give a nice description of its image in degree k = 2. Besides, it follows from
Hain’s results [17] that (1.3) is rationally surjective; see also [25, 19] for recent advances in the
determination of the kernel of (1.3) with rational coefficients. Having ruled out the possibility
of torsion in Γ2I/Γ3I, we determine the kernel of (1.3) for k = 2 (see Corollary 4.5). Moreover,
using the main result of [2], we obtain that (1.3) is surjective for k = 3 (see Corollary 4.6).

On the other hand, let IC := IC(Σ) be the monoid of homology cylinders over Σ. The study
of IC by means of surgery techniques and finite-type invariants has been initiated by Goussarov
and Habiro in [8, 9]. Following this study, we are interested in the comparison between the lower
central series of I and the “Y -filtration” IC = Y1IC ⊃ Y2IC ⊃ Y3IC ⊃ · · · Indeed, I embeds
into IC via the “mapping cylinder” construction, which preserves those filtrations.

Problem D. Determine the kernel and the image of the homomorphism

(1.4)
⊕
k≥1

ΓkI
Γk+1I

−→
⊕
k≥1

YkIC
Yk+1

.

from the associated graded of the lower central series of I to the associated graded of the Y -
filtration of IC.

The case k = 1 is already known [9, 20]. Besides, the question of the injectivity for arbitrary k,
which has already been asked in [15], recently received a partial answer in [19] for rational co-
efficients (in the stable range of the genus g, and up to central elements). Using some of the
results of [20], we solve Problem D in degree k = 2 (see Theorem 4.7).
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Conventions. Given a group G and a normal subgroup N of G, the class modulo N of an
element x ∈ G is denoted by {x}N ∈ G/N , or simply {x} (or even just x) if there is no risk of
confusion. For any elements x, y ∈ G, we set xy = xyx−1, yx = x−1yx and [x, y] = xyx−1y−1.

If not specified, the ground ring for linear algebra is Z. (So, for instance, a “module” means
a Z-module, i.e., an abelian group.) For k ≥ 1, Zk := Z/kZ is the cyclic group of order k. ■

2. Proof of Theorem A

To prove Theorem A, we need to show that the abelian group

Q :=
[I,K]

[I, [I, I]]
is trivial, and for this, we consider the bilinear map

Υ : Iab × K
[I, I]

−→ Q

defined by restricting the Lie bracket of GrΓ I to degrees 1+ 1. Let (γ+, γ−) be a pair of simple
closed curves cobounding a subsurface of genus 1 in Σ, and recall from [11] that I is normally
generated in M by the product p := Tγ+T

−1
γ−

of opposite Dehn twists: hence Iab is generated by

{p}[I,I] as an Sp(H)-module. Since Υ is surjective and Sp(H)-equivariant, the triviality of Q is
equivalent to the nullity of the map

υ := Υ({p},−) : K/[I, I] −→ Q, {k}[I,I] 7−→
{
[p, k]

}
[I,[I,I]].

By Johnson’s work on the abelianized Torelli group [13], the sources of the map Υ and υ are
perfectly well understood. We now review his work very briefly.

2.1. The abelianization of the Torelli group. Recall that, by our assumption, the genus g
of Σ is at least 3. Then, the main result of [13] is an Sp(H)-equivariant isomorphism

(2.1) Iab
(τ1,β)

≃
// Λ3H ×Λ3H⊗Z2

B≤3(Q)

where Q denotes the Z2-affine space of quadratic forms with polar form ω⊗Z2, the space B≤k(Q)
consists of polynomial functions Q → Z2 of degree at most k, the map β : I → B≤3(Q) is the
Birman–Craggs homomorphism, and the maps defining the above fibered product are as follows:
the map Λ3H → Λ3H ⊗Z2 is the canonical homomorphism, and the map B≤3(Q) → Λ3H ⊗Z2

takes the third differential of cubic functions.
Recall that both τ1 and β can be computed as follows on the product TεT

−1
δ of opposite Dehn

twists along a pair (ε, δ) of disjoint and cobounding, simple closed curves:

(2.2) τ1
(
TεT

−1
δ

)
= −

h∑
i=1

ui ∧ vi ∧ e and β
(
TεT

−1
δ

)
=

h∑
i=1

ui vi (e+ 1).

Here (u1, . . . , uh, v1, . . . , vh) is a symplectic basis of the subsurface cobounded by ε and δ (with
the orientation induced from Σ), and e := {ε} is the homology class of ε and δ (which have been
oriented so that the oriented boundary of the previous subsurface is ε∪ (−δ)). Furthermore, we
use the following notations: 1 : Q → Z2 is the constant non-trivial function and, for any h ∈ H,
h : Q → Z2 is the evaluation at h.

Remark 2.1. Note that

(2.3) h1 + h2 = h1 + h2 + ω(h1, h2) 1, for any h1, h2 ∈ H.

Besides, the canonical action of Sp(H) on B≤k(Q) preserves the algebra structure, and is such

that M · h =M(h) for any M ∈ Sp(H) and h ∈ H. ■
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As a consequence of (2.1), we also have an Sp(H)-equivariant isomorphism

(2.4) K/[I, I]
β

≃
// B≤2(Q),

which can be computed as follows: for any bounding simple closed curve δ, we have

(2.5) β(Tδ) =

h∑
i=1

ui · vi

where (u1, . . . , uh, v1, . . . , vh) is a symplectic basis of the subsurface of Σ that is bounded by δ.

Figure 1. A system of “meridians & parallels” in Σ

2.2. Nullity of the map υ. Let (α1, . . . , αg, β1, . . . , βg) be a system of “meridians & parallels”
in Σ as shown in Figure 1. These are oriented simple closed curves and, with the basing arcs
shown on the same figure, they define a basis of the free group π := π1(Σ, ⋆) with ⋆ ∈ ∂Σ. The
corresponding basis of H = H1(Σ;Z) is denoted by

(2.6) {a1, . . . , ag, b1, . . . , bg}.
In the sequel, we take γ+ and γ− to be the curves shown in Figure 2.

Figure 2. The cobounding pair (γ+, γ−), and the bounding simple closed
curves c1, c2

Let Sp be the subgroup of Sp(H) stabilizing the class {p} ∈ Iab of p = Tγ+
T−1
γ−

.

Lemma 2.2. As an Sp-module, B≤2(Q) is generated by the following elements:

(2.7) a1 b1, a2 b2, a3 b3, a1 b2, a3 b2.

Proof. It follows from the isomorphism (2.1) and from formulas (2.2) that Sp is the subgroup of

Sp(H) fixing both a1 ∧ b1 ∧ a2 ∈ Λ3H and a1 b1 (1+ a2) ∈ B≤3(Q). Thus, using Remark 2.1, we
easily check that the following elements of Sp(H) belong to Sp:

• C1 maps b1 to b1 + a1 and fixes all other elements of (2.6);
• for i ̸= g, Di maps (bi, bi+1) to (bi+ ai+1, bi+1+ ai) and fixes all other elements of (2.6);
• for i ̸= 2, Ei maps (ai, bi) to (−bi, ai) and fixes all other elements of (2.6);
• for i, j ≥ 3, Fij exchanges (ai, bi) with (aj , bj) and fixes all other elements of (2.6).

Let V be the Sp-submodule of B≤2(Q) generated by (2.7). As a Z2-vector space, B≤2(Q) is
generated by the following elements:

(i) ai bi (ii) ai bj (i ̸= j) (iii) ai aj (i < j)

(iv) bi bj (i < j) (v) ai (vi) bi (vii) 1
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Hence, it suffices to check that the above elements belong to V :

• For i ≥ 4, we have aibi ∈ V since aibi = F3i · a3b3, which gives the proof for (i).
• We have D2 · a2b2 = a2b2 + a2 a3, hence a2 a3 ∈ V which implies a2 ai = F3i · a2 a3 ∈ V
for all i ≥ 3. Next, D1 · a1b1 = a1b1 + a1 a2 hence a1 a2 ∈ V . Moreover, D2 · a1b2 =
a1b2 + a1 a3 so that a1 a3 ∈ V which implies a1 ai = F3i · a1 a3 ∈ V for all i ≥ 3. Finally,
D3 · a3b3 = a3b3 + a3 a4 so that a3 a4 ∈ V , which implies ai aj ∈ V for all 3 ≤ i < j.
This proves that elements of type (iii) belong to V .

• For all i ≥ 3, we have aib2 = R3i · a3b2 ∈ V . Moreover, for all j ̸= 2 and i ̸= j, we
deduce from (iii) that aibj = Ej · aiaj ∈ V . Thus we have proved that elements of type
(ii) belong to V .

• For all i ̸= 2 and j ̸= i, we deduce from (ii) that bibj = Ei · aibj ∈ V , which proves (iv).

• We have D1 ·a1b2 = a1b2+a1 which implies that a1 ∈ V . We have D1 · b1a2 = b1a2+a2
and so, by (ii), we get a2 ∈ V . Next, we have C1 · b1a3 = a1 a3 + b1a3 + a3 which, by
(ii) and (iii), implies that a3 ∈ V . It follows that ai = F3i · a3 ∈ V for all i ≥ 3, which
concludes for (v).

• We have C1 · b1 b2 = b1 b2 + a1b2 + b2 so, using (ii) and (iv), we obtain b2 ∈ V . Since
bi = Ei · ai for every i ̸= 2, we then deduce case (vi) from case (v).

• Finally, C1 · b1 = b1 + a1 + 1, and case (vii) follows too.

□

Lemma 2.3. As an Sp-module, the image of υ : K/[I, I] → Q is generated by υ(Tc1) and υ(Tc2),
where c1 and c2 are the simple closed curves shown in Figure 2.

Proof. Since the isomorphism (2.4) is Sp(H)-equivariant, we deduce from Lemma 2.2 that the
Sp-module K/[I, I] is generated by the classes of any f1, f2, . . . , f5 ∈ K such that

β(f1) = a1 · b1, β(f2) = a2 · b2, β(f3) = a3 · b3, β(f4) = a1 · b2, β(f5) = a3 · b2.

Using (2.5) and considering the following bounding curves γ1, γ2, γ3, we see that f1 := Tγ1
,

f2 := Tγ1Tγ2 and f3 := Tγ2Tγ3 suit our purposes:

Besides, (2.5) also gives

β(Tc1) = a1 · b1 + b2
(2.3)
= a1 · b1 + a1 · b2 and β(Tc2) = a3 · b2 + b3

(2.3)
= a3 · b2 + a3 · b3,

showing that we can take f4 := f1Tc1 and f5 := f3Tc2 .
Since the map υ is Sp-equivariant and since its source is Sp-generated by {f1}, . . . , {f5}, its

image is Sp-generated by υ({f1}), . . . , υ({f5}). Since the curve γi is disjoint from γ+ and γ− for
each i ∈ {1, 2, 3}, we obviously have υ({Tγi}) = 0. Hence, by definition of f1, . . . , f5, the image
of υ is Sp-generated by υ({Tc1}) and υ({Tc2}). □

Assume now that both [p, Tc1 ] and [p, Tc2 ] belong to Γ3I: this will follow from Example 2.5
and Example 2.6, respectively, in the next subsection. Then we have υ(Tc1) = υ(Tc2) = 0, and
Lemma 2.3 implies that the map υ is zero. Therefore, the group Q = [I,K]/[I, [I, I]] is trivial,
which proves Theorem A.

2.3. The “Push” map and its applications. To prove that [p, Tci ] ∈ Γ3I for i = 1, 2 (see
Examples 2.5 and 2.6 below), we use the “Push” map. So we start by reviewing this construction.

Let W be a compact, connected, oriented surface with b ∈ {1, 2} boundary components, and
fix a connected component δ of ∂W . The surface obtained from W by gluing a closed disk D

along δ is denoted by ıW . The unit tangent bundle of ıW is denoted by UT (ıW ); we choose a

base point −→∗ ∈ UT (ıW ) which projects to the center ∗ ∈ D.
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There is a homomorphism M(W ) → M(ıW ) that maps any f to Ûf := f ∪ idD. Moreover,

there is a anti-homomorphism Push : π1
(
UT (ıW ),−→∗

)
→ M(W ) given by Push(fiber) = Tδ, and

by

(2.8) Push(−→γ ) = Tγ+
T−1
γ−

for any (smooth) oriented simple closed curve γ in ıW , whose unit tangent vector field −→γ passes
through −→∗ : here γ+ (resp. γ−) is the boundary component of a regular neighborhood N(γ) of γ
(containing D) where the orientation induced by N(γ) is the same as (resp. opposite to) the
orientation parallel to γ. Then, the Birman’s exact sequence is

π1
(
UT (ıW ),−→∗

) Push //M(W )
(̃ · )
//M(ıW ) // 1,

see [5, §4.2.5] or [29], for instance. (Furthermore, the “Push” map is injective if χ(ıW ) < 0, but
we shall not need this fact.)

Let V be another (compact, connected, oriented) surface with c ∈ {1, 2} boundary compo-
nents, and assume that one connected component of ∂V is identified to δ. Then, by gluing W
and V along δ, we get a new surface W+ =W ∪ V , which has b+ c− 2 boundary components.

There is a homomorphism M(W ) → M(W+) that maps any f to f+ := f ∪ idV . In the
sequel, we consider the following composition

π1
(
UT (ıW ),−→∗

) Push //

Push+

33
M(W )

( · )+
//M(W+)

Proposition 2.4. Assume that the curve δ bounds in W+ (i.e. b = 1 or c = 1), so that W+

has at most one boundary component. Then, we have the following:

(1) Push+ takes values in I(W+);

(2) for any u ∈ π1
(
UT (ıW ),−→∗

)
and w ∈ M(W ) such that Ûw acts trivially on the quo-

tient π1(ıW, ∗)/Γkπ1(ıW, ∗) for some k ≥ 2, the commutator
[
w+,Push+(u)

]
in M(W+)

belongs to ΓkI(W+).

Proof. (1) By assumption, Push+(fiber) = Tδ ∈ M(W+) is the Dehn twist along a bounding
simple closed curve and, so, belongs to I(W+). Thus, it remains to check that, for any simple

closed curve γ ⊂ ıW as in (2.8), we have Push(−→γ ) ∈ I(W+). Indeed, if c = 1, then γ+ and γ−
cobound a subsurface in W+ (which contains V ). Besides, if b = 1, then (depending on whether

γ is separating or not in ıW ) either each of γ+ and γ− bounds a subsurface in W ⊂W+, or, γ+
and γ− cobound a subsurface in W ⊂W+.
(2) For k = 2, the statement follows from (1). Indeed it is easily checked with a Mayer–Vietoris
argument that w+ ∈ I(W+) (by distinguishing the case b = 1 from the case c = 1). Hence we
assume in the sequel that k ≥ 3.

It easily follows from (2.8) that the Push map is M(W )-equivariant in the following sense:

for any x ∈ π1
(
UT (ıW ),−→∗

)
and f ∈ M(W ), we have Push

(−→
f ∗(x)

)
= f Push(x)f−1, where

−→
f : UT (ıW ) → UT (ıW ) is the fiber-bundle map induced by the diffeomorphism Ûf : ıW → ıW .
Hence we have

(2.9)
[
w+,Push+(u)

]
=
(
w Push(u)w−1

)+ (
Push+(u)

)−1
= Push+

(−→w ∗(u)
) (

Push+(u)
)−1

.

Next, we claim that U := u−1 −→w ∗(u) belongs to Γkπ1
(
UT (ıW ),−→∗

)
. Then, we conclude from (2.9)

and statement (1) that
[
w+,Push+(u)

]
= Push+

(
U) belongs to ΓkI(W+).

It now remains to prove the above claim. By the assumption on w, we know that u−1 −→w ∗(u) =

Ũ · fiberi for some Ũ ∈ Γkπ1
(
UT (ıW ),−→∗

)
and i ∈ Z (both depending on u). Projecting this

identity onto H1

(
UT (ıW );Z

)
, we obtain that −→w ∗([u]) = [u] + i · [fiber]. But, w acts trivially on

H1

(
UT (ıW );Z

)
, which implies that i = 0 and proves the claim.

The triviality of the action of Ûw onH1

(
UT (ıW );Z

)
can be justified as follows, by distinguishing

the case b = 2 from b = 1. Note that, in both cases, we have Ûw ∈ K(ıW ) by our assumption on
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k ≥ 3. If b = 2, then ıW has one boundary component, so that we have a short exact sequence

0 // H1(fiber;Z) // H1

(
UT (ıW );Z

)
// H1(ıW ;Z) // 0

which splits by choosing a non-singular vector field on ıW ; according to [10], the Johnson sub-

group K(ıW ) acts trivially on homotopy classes of non-singular vector fields; hence, Ûw pre-

serves the above splitting so that the triviality of its action on H1(ıW ;Z) implies the same on

H1

(
UT (ıW );Z

)
. If b = 1, then ıW is closed and we can find w′ ∈ K(W ) such that ıw′ = Ûw; by the

same argument as in the previous case applied now to W , w′ acts trivially on H1

(
UT (W );Z

)
and, since H1

(
UT (ıW );Z

)
is a quotient of H1

(
UT (W );Z

)
, we deduce that Ûw acts trivially on

H1

(
UT (ıW );Z

)
. □

We now apply Proposition 2.4 in the following two examples, where W+ is our reference
surface Σ and we take k := 3.

Example 2.5. For the decomposition W ∪ V of Σ shown below, take u := −→γ and w := Td.

Then, we have Push(u) = Tγ+T
−1
γ−

and we deduce that
î
Td, Tγ+T

−1
γ−

ó
∈ Γ3I(Σ).

■

Example 2.6. For the decomposition V ∪W of Σ shown below, take u := −→γ and w := Td.

Then, we have Push(u) = Tγ+T
−1
γ−

and we deduce that
î
Td, Tγ+T

−1
γ−

ó
∈ Γ3I(Σ).

■

3. Proof of Theorem B

In this section, we define the map B and we prove Theorem B.

3.1. The map B. We embed Λ4HQ into the space S2(Λ2HQ), by sending any 4-vector a∧b∧c∧d
to (a∧b) · (c∧d)+(a∧c) · (d∧b)+(a∧d) · (b∧c). (In the diagrammatic setting that is mentioned
below in Remark 3.1, this embedding corresponds to the “IHX” relations.) Then we consider
the Q-linear map

(3.1) B =
(
B(0), B(2)

)
: Λ2(Λ3HQ) −→ S2(Λ2HQ)

Λ4HQ ⊕Q

defined by

(3.2) B(0)
(
(x1 ∧ x2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

)
=
∑

i,j∈Z3

ω(xi, yj) (xi+1 ∧ xi+2) · (yj+1 ∧ yj+2),

and

(3.3) B(2)
(
(x1 ∧ x2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

)
= −1

4

∣∣∣∣∣∣
ω(x1, y1) ω(x1, y2) ω(x1, y3)
ω(x2, y1) ω(x2, y2) ω(x2, y3)
ω(x3, y1) ω(x3, y2) ω(x3, y3)

∣∣∣∣∣∣
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We refer to the map B as the diagrammatic bracket since, as specified in the next remark, it is
also given by restricting the Lie bracket of the space of “symplectic Jacobi diagrams”.

Remark 3.1. There is a Q-algebra of “symplectic Jacobi diagrams”, denoted by A(HQ) in [15],
whose multiplication is a diagrammatic analogue of the Moyal–Weyl product. It is a graded
Hopf Q-algebra, whose primitive part Ac(HQ) consists of connected Jacobi diagrams. It turns
out that, in degree 1 + 1, its Lie bracket

[−,−] : Λ2Ac
1(H

Q) −→ Ac
2(H

Q)

is essentially the above map B: indeed, according to [15, Lemma 5.4], the B(0) component
corresponds to 0-looped diagrams (i.e. trees) in the target, while the B(2) component corresponds
to 2-looped diagrams (i.e. multiples of the theta graph). ■

It is proved in [15, Lemma 5.6 & (5.5)] that ker(B) = RQ
2 , i.e. the diagrammatic bracket B

and the “topological” bracket JQ
2 : Lie2(Λ

3HQ) → (Γ2I/Γ3I) ⊗ Q share the same kernel. In

the sequel, we will just need the inclusion RQ
2 ⊂ ker(B) which follows also from Proposition 3.2

below.
To state this proposition, we need two ingredients. On the one hand, we consider the second

Johnson homomorphism τ2 : K → S2(Λ2HQ)/Λ4HQ. According to [22, 23], it is determined by
the fact that

(3.4) τ2(Tγ) =
1

2

∑
i,j

(ui ∧ vi) · (uj ∧ vj),

for any bounding simple closed curve γ, where (u1, . . . , uh, v1, . . . , vh) is a symplectic basis of
the subsurface of Σ bounded by γ.

On the other hand, we consider the second core of the Casson invariant d′′ : K → Q, which
appeared in Auclair’s thesis [1, Theorem 4.4.6]. This is an alternative to Morita’s core of the
Casson invariant d : K → Z [22, 23]. With the knowledge of τ2, these two homomorphisms are
equivalent one to the other: specifically, we have

(3.5) d = 2d′ + 48d′′

where d′ := −d′ ◦ τ2 and d′ : S2(Λ2HQ)/Λ4HQ → Q is defined by

d′
(
(a ∧ b) · (c ∧ d)

)
= −4ω(a, b)ω(c, d)− 2ω(a, c)ω(b, d) + 2ω(a, d)ω(b, c).

Originally, both homomorphisms are defined from the Casson invariant and, a posteriori, they
are determined by the formulas

d(Tγ) = 4h(h− 1) and d′′(Tγ) = −h/8,
for any bounding simple closed curve γ, where h denotes the genus of the subsurface of Σ bounded
by γ. From our perspectives (see Remark 3.3 below), we find more natural to work here with
d′′ rather than d.

Note that both τ2 and d′′ can be restricted to Γ2I = [I, I], and they vanish on Γ3I.

Proposition 3.2. We have (τ2, d
′′) ◦ JQ

2 = B.

Proof. That τ2 ◦ JQ
2 = B(0) is well-known, and follows from the fact that the sequence of all

Johnson homomorphisms τk (k ≥ 1) defines a Lie algebra map on the associated graded of the
“Johnson filtration” [24].

That d′′ ◦ JQ
2 = B(2) is proved as follows. Let u, v ∈ I and assume, without loss of generality,

that we have
τ1(u) = x1 ∧ x2 ∧ x3 and τ1(v) = y1 ∧ y2 ∧ y3

for some x1, x2, x3, y1, y2, y3 ∈ H. We wish to prove that

d′′([u, v]) = −1

4

∣∣∣∣∣∣
ω(x1, y1) ω(x1, y2) ω(x1, y3)
ω(x2, y1) ω(x2, y2) ω(x2, y3)
ω(x3, y1) ω(x3, y2) ω(x3, y3)

∣∣∣∣∣∣ .
But this follows easily from (3.5), the above definition of d′ and Morita’s formula [22, Prop. 5.1]
which, in our notations, states that

d([u, v]) = 8
∑

i,j∈Z3

ω(xi, xi+1)ω(yj , yj+1)ω(xi+2, yj+2).
□
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Remark 3.3. Alternatively, one can obtain Proposition 3.2 using the LMO homomorphism
Z : I → A(HQ) that has been introduced in [15]. Indeed, τ2 coincides with the tree part of the
degree 2 part Z2 of Z [21, Lemma 4.3], while d′′ is exactly the coefficient of the theta graph in
Z2 [21, Lemma 7.3]. Then, the proposition follows directly from [21, (4.5)] and Remark 3.1. ■

3.2. Strategy for the proof of Theorem B. We are interested in the submodule

K := ker(B) ∩ Λ2(Λ3H)

of Λ2(Λ3H). In the previous subsection, we have justified that K contains the kernel of
J : Λ2(Λ3H) → Γ2I/Γ3I. To prove Theorem B, we now need to show that J(K) = 0.

In the sequel, we use the following notation and terminology. We fix a symplectic basis
S = {a1, . . . , ag, b1, . . . , bg} of H as in (2.6). An elementary trivector is an element s1∧s2∧s3 ∈
Λ3H with s1, s2, s3 ∈ S. The wedge of two elementary trivectors is denoted by

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) := (s1 ∧ s2 ∧ s3) ∧ (s′1 ∧ s′2 ∧ s′3) ∈ Λ2(Λ3H).

Remark 3.4. A basis of the free module Λ2(Λ3H) can be extracted from the list

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) , with s1, s2, s3, s

′
1, s

′
2, s

′
3 ∈ S

by deleting zeroes and fixing signs among repetitions, which means the following: if the elementV

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) is zero, then it is deleted from the list; otherwise, among all the repe-

titions of ±

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) in the above list, we choose either

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) or

−

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3). Thus, such a basis of Λ2(Λ3H) is indexed by unordered pairs {I, J} of

3-element subsets I, J of S such that I ̸= J (the corresponding element of the basis being equal
to ±

(
i1 ∧ i2 ∧ i3

)
∧
(
j1 ∧ j2 ∧ j3

)
if I, J write {i1, i2, i3}, {j1, j2, j3} respectively), and any two

choices of such bases differ by some sign changes. ■

We denote by ·̃ the involution of S that is defined by ‹ai = bi and b̃i = ai. A self-contraction
of an elementary trivector s1 ∧ s2 ∧ s3 is a pair {si, sj} such that si = ‹sj . A mixed contraction
between two elementary trivectors s1∧s2∧s3 and s′1∧s′2∧s′3 is a pair {si, s′j} such that s′j = ‹si.
There is the decomposition

Λ2(Λ3H) = V0 ⊕ V1 ⊕ V2 ⊕ V3

where Vm denotes the submodule generated by the elements

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) withmmixed

contractions between the elementary trivectors s1 ∧ s2 ∧ s3 and s′1 ∧ s′2 ∧ s′3. Furthermore, V1
decomposes itself as

V1 = V1,0 ⊕ V1,1 ⊕ V1,2

where V1,n is the submodule generated by the elements

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) with a single

mixed contraction between s1 ∧ s2 ∧ s3 and s′1 ∧ s′2 ∧ s′3, and a total of n self-contractions which
are disjoint from the mixed contraction. Therefore, we have

(3.6) Λ2(Λ3H) = U0 ⊕ U1 ⊕ U2 ⊕ U3

where U0 := V0, U1 := V1,0, U2 := V1,1 ⊕ V2 and U3 := V1,2 ⊕ V3. We can extract bases of Vm
and V1,n from the above generating sets by deleting zeroes and fixing signs among repetitions,
as explained in Remark 3.4.

Lemma 3.5. We have K = U0 ⊕ (K ∩ U1)⊕ (K ∩ U2)⊕ (K ∩ U3).

Proof. We start by observing that

S2(Λ2HQ)

Λ4HQ =W0 ⊕W1 ⊕W2

where Wr denotes the subspace generated by elements of the form (s1 ∧ s2) · (s3 ∧ s4) showing
exactly r pairs {si, sj} of the form {s, s̃} with s ∈ S. (If r = 2, we require that those two pairs
are disjoint.)

Let k ∈ K. By (3.6), there exist k0 ∈ U0, . . . , k3 ∈ U3 such that k = k0 + · · · + k3. Since
B(0)(Ui) is contained in Wi−1 for i ≥ 1, and since

0 = B(0)(k) = B(0)(k1) +B(0)(k2) +B(0)(k3),

each of B(0)(k1), B
(0)(k2) and B

(0)(k3) is trivial. Since B(2)(k1) = B(2)(k2) = 0, it follows that
ki ∈ K ∩Ui for i = 1, 2. Finally, since 0 = B(2)(k) = B(2)(k3), we have k3 ∈ K ∩U3 as well. □
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In the sequel, we shall also consider the subgroup

(3.7) G := G(S)
(
≃ Zg

4 ⋊Sg

)
of Sp(H) that is generated by the transformations Ei and Fij , where

• Ei maps (ai, bi) to (−bi, ai) and fixes all other elements of S,
• Fij exchanges (ai, bi) with (aj , bj) and fixes all other elements of S.

Observe that the G-action preserves the decomposition (3.6) of Λ2(Λ3H), as well as the resulting
decomposition of K in Lemma 3.5. Then, the proof of Theorem B splits into two parts:

• in §3.3, we identify a G-generating system of K by finding a G-generating system of
K ∩ Ui for each i ∈ {0, 1, 2, 3};

• in §3.4, we show that J vanishes on this G-generating system of K.

3.3. A finite generating system of K. Set ε(s) := ω(s, s̃) for all s ∈ S. It is straightforward
to check that the following elements of Λ2(Λ3H) belong to K = ker(B) ∩ Λ2(Λ3H):

D(x, y ; c1, c2 ; x
′, y′) := ε(c1)

V

(x, y, c1 ; ‹c1, x′, y′)− ε(c2)

V

(x, y, c2 ; ‹c2, x′, y′)
with x, y, c1, c2,‹x′,‹y′ pairwise different;

S

Å
x, y ;

p q
r s

ã
:= ε(r)ε(s)

V

(x, p, q ; y, p̃, q̃)− ε(p)ε(r)

V

(x, q, s ; y, q̃, s̃)

+ε(p)ε(q)

V

(x, r, s ; y, r̃, s̃)− ε(q)ε(s)

V

(x, p, r ; y, p̃, r̃)

with p, q, r, s, x, ỹ pairwise different;

T(x ; p, q, r) := ε(r)

V

(x, p, q ; x, p̃, q̃)− ε(q)

V

(x, p, r ; x, p̃, r̃) + ε(p)

V

(x, q, r̃ ; x, q̃, r)

with p, p̃, q, q̃, r, r̃, x pairwise different;

IHX1(s1; s2, s3, s4 ; c) :=

V

(s1, s2, c ; c̃, s3, s4) +

V

(s1, s3, c ; c̃, s4, s2) +

V

(s1, s4, c ; c̃, s2, s3)

with c, s2, ‹s2, s3, ‹s3, s4, ‹s4 pairwise different

and s1 ̸∈ {c, s2, ‹s2, s3, ‹s3, s4, ‹s4};
IHX2(x, y ; p ; c) := ε(p)

V
(x, p, p̃ ; y, p, p̃)− ε(c)

V
(x, y, c ; p, p̃, c̃)

with x, x̃, y, ỹ, p, p̃ pairwise different and c ̸∈ {x, y, p, p̃};
IHX3(p, q ; r) := ε(r)

V

(p, p̃, q ; q̃, r, r̃)− ε(q)

V

(r, r̃, p ; p̃, r, r̃)

−ε(r)

V

(q, q̃, p ; p̃, r, r̃) + ε(p)

V

(r, r̃, q ; q̃, r, r̃)

with p, p̃, q, q̃, r, r̃ pairwise different;

IHX′
3(p, q ; r, s) := ε(q)

V

(p, r, s ; p̃, r̃, s̃)− ε(p)

V

(q, r, s ; q̃, r̃, s̃)− ε(s)

V

(r̃, p̃, q ; r, p, q̃)

−ε(r)

V

(s, p̃, q ; s̃, p, q̃)− ε(r)

V

(s, s̃, q ; q̃, p, p̃) + ε(s)

V

(q, q̃, p ; p̃, r, r̃)

with p, p̃, q, q̃, r, r̃, s, s̃ pairwise different.

Theorem 3.6. As a G-submodule of Λ2(Λ3H), K is generated by the following 26 elements:

(R0)

V

(a1, a2, a3 ; a4, a5, a6),

V

(a1, b1, a2 ; a3, a4, a5),

V

(a1, b1, a2 ; a3, b3, a4),V

(a1, a2, a3 ; a3, a4, a5),

V

(a1, b1, a2 ; a2, a3, a4),

V

(a1, b1, a2 ; a2, a3, b3),V

(a1, a2, a3 ; a2, a3, a4);
(R1) D(a1, a2 ; a5, a3 ; a3, a4), D(a1, a2 ; a3, a4 ; a3, a4), D(a1, a2 ; a3, b1 ; a3, a4),

D(a3, a1 ; a4, a2 ; a2, a3), D(a3, a1 ; b1, a2 ; a2, a3), D(a1, a2 ; a4, a3 ; a2, a1),
IHX1(a1; a2, a3, a4 ; b1);

(R2) S

Å
a1, a2 ;

a4 a5
a3 b3

ã
, S

Å
a1, a2 ;

a4 b4
a3 b3

ã
, S

Å
a1, a2 ;

a2 b1
a3 b3

ã
,

S

Å
a1, a2 ;

a2 a4
a3 b3

ã
, S

Å
a1, a2 ;

b1 a4
a3 b3

ã
, T(a1 ; a2, a3, a4),

IHX2(a1, a2 ; a3 ; a4), IHX2(a1, a2 ; a3 ; b1);
(R3) D(a1, b1 ; a2, b2 ; a3, b3), D(a1, b1 ; a2, a3 ; a4, b4), IHX3(a1, a2 ; a3), IHX

′
3(a1, a2 ; a3, a4).

In the above statement, it is understood that we only consider the elements making sense in the
given genus: for instance, the element

V

(a1, a2, a3 ; a4, a5, a6) in (R0) has to be removed in the
cases g < 6. (Recall that our permanent assumption is that g ≥ 3.)

The proof of Theorem 3.6, which is given below, consists in proving that the family (Ri) is a
G-generating system of K ∩ Ui for each case i = 0, i = 1, i = 2 and i = 3. Actually, as we shall
see, the proofs are rather different in nature from one case to another.
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3.3.1. A G-generating system of K ∩ U0. By its very definition, the module K ∩ U0 = U0 = V0
is generated by wedge of elementary trivectors without mixed contractions, i.e. the elements

(3.8)

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) with {‹s1, ‹s2, ‹s3} ∩ {s′1, s′2, s′3} = ∅.

Let N : S → {1, . . . , g} be the map defined by N(ai) = N(bi) = i. We consider an element
Λ :=

V

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) of the form (3.8), and let

n := ♯ N({s1, s2, s3}) ∩N({s′1, s′2, s′3}).
If n = 0, then ±Λ is in the G-orbit of

V

(a1, a2, a3 ; a4, a5, a6), or

V

(a1, b1, a2 ; a3, a4, a5), orV

(a1, b1, a2 ; a3, b3, a4). If n = 1, then ±Λ is in the G-orbit of

V

(a1, a2, a3 ; a3, a4, a5) orV

(a1, b1, a2 ; a2, a3, a4), or

V

(a1, b1, a2 ; a2, a3, b3). If n = 2, then ±Λ is in the G-orbit ofV

(a1, a2, a3 ; a2, a3, a4). Thus, (R0) is a G-generating system of K ∩ U0.

3.3.2. A G-generating system of K ∩ U1. As in the proof of Lemma 3.5, we consider here the
subspace W0 of S2(Λ2HQ)/Λ4HQ generated by the elements (s1 ∧ s2) · (s3 ∧ s4) showing no
contraction. This decomposes as a direct sum

W0 =
⊕

{s1,s2,s3,s4}

Ws1,s2,s3,s4

indexed by the unordered quadruplets {s1, s2, s3, s4} ∈ S4/S4 showing no contraction and at
most 2 repetitions, where Ws1,s2,s3,s4 is the subspace generated by (sσ(1) ∧ sσ(2)) · (sσ(3) ∧ sσ(4))
for σ ∈ S4. Similarly, the submodule U1 = V1,0 of Λ2(Λ3H) decomposes as a direct sum

U1 =
⊕

{s1,s2,s3,s4}

Us1,s2,s3,s4

indexed by the same quadruplets, where we denote by Us1,s2,s3,s4 the submodule generated byV(
sσ(1), sσ(2), ai ; bi, sσ(3), sσ(4)

)
for i ∈ {1, . . . , g} and σ ∈ S4. The map B(0) : U1 → W0

preserves the above decompositions, so that we have

K ∩ U1 =
⊕

{s1,s2,s3,s4}

K ∩ Us1,s2,s3,s4 .

Besides, the map B(0) is G-equivariant: so, a generating system of the G-module K ∩ U1 is
obtained by determining a generating system of the module K ∩ Us1,s2,s3,s4 for a representative
{s1, s2, s3, s4} in each G-orbit. But, an unordered quadruplet {s1, s2, s3, s4} with no contrac-
tion and at most 2 repetitions is G-equivalent to either {a1, a2, a3, a4}, or {a1, a2, a3, a3}, or
{a1, a1, a2, a2}.

The following three lemmas deal with the above three subcases in this order and, all together,
they prove that (R1) is a G-generating system of K ∩ U1.

Lemma 3.7. If g ≥ 4, the module K ∩ Ua1,a2,a3,a4
is generated by

(i) D
(
aσ(1), aσ(2) ; ai, aσ(3) ; aσ(3), aσ(4)

)
with i ≥ 5, σ ∈ S4,

(ii) D
(
aσ(1), aσ(2) ; aσ(3), aσ(4) ; aσ(3), aσ(4)

)
with σ ∈ S4,

(iii) D
(
aσ(1), aσ(2) ; aσ(3), bσ(1) ; aσ(3), aσ(4)

)
with σ ∈ S4,

(iv) IHX1

(
aσ(1); aσ(2), aσ(3), aσ(4) ; bσ(1)

)
with σ ∈ S4.

Lemma 3.8. The module K ∩ Ua1,a2,a3,a3
is generated by

(i) D
(
a3, aσ(1) ; ai, aσ(2) ; aσ(2), a3

)
with i ≥ 4, σ ∈ S2,

(ii) D
(
a3, aσ(1) ; bσ(1), aσ(2) ; aσ(2), a3

)
with σ ∈ S2.

Lemma 3.9. The module K ∩ Ua1,a1,a2,a2 is generated by D(a1, a2 ; ai, a3 ; a2, a1) with i ≥ 4.

Proof of Lemma 3.7. The module U := Ua1,a2,a3,a4 is free, and a basis is obtained from the
following list by deleting zeroes and fixing signs among repetitions, as explained in Remark 3.4:

(3.9)

V(
aσ(1), aσ(2), ai ; bi, aσ(3), aσ(4)

)
with σ ∈ S4, i ∈ {1, . . . , g}.

We choose such a basis of U and we denote it by {eJ,i}J,i, which is indexed by 2-element
subsets J ⊂ {1, 2, 3, 4} together with an element i ∈ {1, . . . , g} \ J ; specifically, we have eJ,i =

±

V

(aj , aj′ , ai ; bi, ak, ak′) writing J and J = {1, 2, 3, 4} \ J as {j, j′} and {k, k′}, respectively.
Let U ′ be the submodule of U (freely) generated by the previous elements eJ,i for i ≤ 4 (hence

J ⊂ {1, 2, 3, 4} is a 2-element subset and i ∈ J). When viewed as a relation in U , any element
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of type (i) identifies a basis element eJ,i with ±eJ,k for i ≥ 5, J ⊂ {1, 2, 3, 4} of cardinality 2

and some k ∈ J . Besides, for any J ⊂ {1, 2, 3, 4} of cardinality 2, writing J = {i, k}, the basis
element eJ,i is identified with ±eJ,k if an appropriate element of type (ii) is viewed as a relation
in U . Therefore, the inclusion of U ′ in U induces an isomorphism

U ′

⟨ (ii), (iii), (iv) ⟩
≃−→ U

⟨ (i), (ii), (iii), (iv) ⟩
.

So, we can assume for the rest of the proof that g = 4, and we need to show that the map B(0)

induces an injection from U/⟨ (ii), (iii), (iv) ⟩ to S2(Λ2HQ)/Λ4HQ. By the above discussion, the
module U/⟨ (ii) ⟩ is free of rank 6, with basis {eJ}J indexed by 2-element subsets J of {1, 2, 3, 4}
where eJ = ±

V

(aj , aj′ , ai ; bi, ai, ak) writing J = {j, j′} and J = {i, k}. When viewed as a
relation in U/⟨ (ii) ⟩, any element of type (iii) identifies a basis element eJ with ±eJ for a 2-
element subset J of {1, 2, 3, 4}. Consequently, the module U/⟨ (ii), (iii) ⟩ is free of rank 3, with
basis {eP }P indexed by partitions P = J ⊔ J of {1, 2, 3, 4} into two 2-element subsets.

On the other hand, the Q-vector space W :=Wa1,a2,a3,a4
is generated by

(3.10)
{
(a1 ∧ a2) · (a3 ∧ a4) , (a1 ∧ a3) · (a4 ∧ a2) , (a1 ∧ a4) · (a2 ∧ a3)

}
with the single relation

(3.11) (a1 ∧ a2) · (a3 ∧ a4) + (a1 ∧ a3) · (a4 ∧ a2) + (a1 ∧ a4) · (a2 ∧ a3).

The map B(0) : U/⟨ (ii), (iii) ⟩ →W sends the basis element eP to ±(aj ∧ aj′) · (ak ∧ ak′) writing
P = {j, j′} ⊔ {k, k′}. Finally, when viewed as a relation in U/⟨ (ii), (iii) ⟩, any element of type
(iv) goes to (3.11). The conclusion follows. □

Proof of Lemma 3.8. The module U := Ua1,a2,a3,a3 is free, and a basis is obtained from the
following list by deleting zeroes and fixing signs among repetitions, as explained in Remark 3.4:

V(
aσ(1), aσ(2), ai ; bi, aσ(3), aσ(4)

)
with {1, 2, 3, 4} σ−→ {1, 2, 3} surjective, reaching 3 twice,

and i ∈ {1, . . . , g}.

We choose such a basis of U and denote it by {ej,i}j,i, which is indexed by j ∈ {1, 2} and

i ̸∈ {j, 3}; specifically, we have ej,i = ±

VÄ
a3, aj , ai ; bi, aj , a3

ä
where j is the element of {1, 2}

not equal to j. When viewed as a relation in U , any element of type (i) identifies a basis element
ej,i with ±ej,j for i ≥ 4 and j ∈ {1, 2}, and any element of type (ii) identifies e1,2 with ±e2,1. It
follows that the module U/⟨ (i), (ii) ⟩ is free of rank 1.

On the other hand, the Q-vector space W := Wa1,a2,a3,a3 is 1-dimensional, generated by

(a1 ∧ a3) · (a2 ∧ a3). Since B(0) maps e1,2 to ±(a1 ∧ a3) · (a2 ∧ a3), it induces an injection
U/⟨ (i), (ii) ⟩ →W . □

Proof of Lemma 3.9. The module U := Ua1,a1,a2,a2
is free, and a basis is obtained from the

following list by deleting zeroes and fixing signs among repetitions, as explained in Remark 3.4:

V(
aσ(1), aσ(2), ai ; bi, aσ(3), aσ(4)

)
with {1, 2, 3, 4} σ−→ {1, 2} reaching each of 1 and 2 twice,

and i ∈ {1, . . . , g}.

We choose such a basis of U and denote it by {ei}i≥3, having ei = ±

V

(a1, a2, ai ; bi, a2, a1).
When viewed as a relation in U , any element of type (i) identifies a basis element ei with ±e3
for i ≥ 3. It follows that the module U/⟨ (i) ⟩ is free of rank 1.

Besides, theQ-vector spaceW :=Wa1,a1,a2,a2
is 1-dimensional, generated by (a1∧a2)·(a1∧a2).

Since B(0) maps e3 to ±(a1 ∧ a2) · (a1 ∧ a2), it induces an injection U/⟨ (i) ⟩ →W . □

3.3.3. A G-generating system of K ∩ U2. As in the proof of Lemma 3.5, we consider now the
subspace W1 of S2(Λ2HQ)/Λ4HQ generated by the elements (s1 ∧ s2) · (s3 ∧ s4) showing a single
contraction. This decomposes as a direct sum

W1 =
⊕
{s,s′}

Ws,s′

indexed by the unordered pairs {s, s′} ∈ S2/S2 such that s′ ̸= s̃, where Ws,s′ denotes the
subspace generated by the elements (s ∧ x) · (s′ ∧ x̃) for all x ∈ S. Similarly, the submodule
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U2 = V1,1 ⊕ V2 decomposes as a direct sum

U2 =
⊕
{s,s′}

Us,s′

indexed by the same pairs, where Us,s′ denotes the submodule generated by the elements

V

(s, x, y ; s′, x̃, ỹ) for all x, y ∈ S and

V

(s, s′, p ; p̃, q, q̃) for all p ∈ S, q ∈ S \ {s, s′, s̃, s̃′}. The
map B(0) : U2 →W1 preserves the above decompositions, so that we have

K ∩ U2 =
⊕
{s,s′}

K ∩ Us,s′ .

Since B(0) is G-equivariant, a G-generating system of K ∩ U2 is obtained by determining a
generating system of K ∩Us,s′ for a representative {s, s′} in each G-orbit. Thus, we are reduced
to determine a generating system of K ∩Ua1,a2

and K ∩Ua1,a1
. This is achieved by the following

two lemmas which prove that (R2) is a G-generating system of K ∩ U2.

Lemma 3.10. The module K ∩ Ua1,a2
is generated by

(i) S

Å
aσ(1), aσ(2) ;

p q
r r̃

ã
with σ ∈ S2, r ̸∈ {p, p̃, q, q̃, a1, a2, b1, b2} and p, q, aσ(1), bσ(2) pair-

wise different,
(ii) IHX2

(
aσ(1), aσ(2) ; p ; q

)
with σ ∈ S2, p ̸∈ {a1, a2, b1, b2} and q ̸∈ {a1, a2, p, p̃}.

Lemma 3.11. The module K ∩ Ua1,a1 is generated by

(∗) T(a1 ; p, q, r) with p, q, r ̸∈ {a1, b1} and p, p̃, q, q̃, r, r̃ pairwise different.

Proof of Lemma 3.10. The module U := Ua1,a2
is free of basis {u(x, y)}x,y ⊔ {u′(q, p)}q,p where

(3.12) u(x, y) :=

V

(a1, x, y ; a2, x̃, ỹ)

is indexed by 2-element subsets {x, y} of S \ {a1, b2}, and
(3.13) u′(q, p) :=

V
(a1, a2, q ; q̃, p, p̃)

is indexed by pairs (q, p) with q ∈ S \ {a1, a2} and p ∈ S \ {a1, a2, b1, b2, q, q̃}. We claim that the
quotient module U/⟨ (i), (ii) ⟩ is generated by

(3.14) u(a3, b3) and u(a2, p) for p ∈ S \ {a1, a2, b2}.
We start by observing that any element u′(q, p) of type (3.13) is, modulo (ii), equal to the

element ±u(p, p̃) of type (3.12). Indeed, we have

IHX2(a1, a2 ; p ; q) = −ε(p)u(p, p̃)− ε(q)u′(q, p).

Thus, to prove the above claim, it is enough to show that the elements (3.12) not among the
elements (3.14) can be written in terms of the latter using the relations (i). For any r ∈
S \ {a1, a2, a3, b1, b2, b3}, we have the following elements of type (i):

S

Å
a1, a2 ;

r a2
a3 b3

ã
= −u(r, a2)− ε(r)u(a2, b3) + ε(r)u(a3, b3) + u(r, a3)

S

Å
a1, a2 ;

r a2
b3 a3

ã
= −u(r, a2) + ε(r)u(a2, a3) + ε(r)u(b3, a3)− u(r, b3)

S

Å
a1, a2 ;

a3 b3
r r̃

ã
= −u(a3, b3)− ε(r)u(b3, r̃)− u(r, r̃)− ε(r)u(a3, r)

We deduce that, modulo (i), u(r, r̃) is a linear combination of (3.14) for r ∈ S \ {a1, a2, b1, b2}.
Next, for any such r and p ∈ S \ {a1, a2, b2, r, r̃}, considering

S

Å
a1, a2 ;

p a2
r r̃

ã
= −u(p, a2)− ε(p)ε(r)u(a2, r̃) + ε(p)u(r, r̃) + ε(r)u(p, r)

shows that u(p, r) is also modulo (i) a linear combination of (3.14). This proves the above claim.
The Q-vector space W :=Wa1,a2 has the basis {w(x)}x defined by w(x) := (a1 ∧ x) · (a2 ∧ x̃)

for x ∈ S \ {a1, b2}. The map B(0) : U/⟨ (i), (ii) ⟩ → W sends u(x, y) to ε(x)w(y) + ε(y)w(x).
Hence, the images of the generators (3.14) are

−w(a3) + w(b3), ε(p)w(a2) + w(p) for p ∈ S \ {a1, a2, b2},
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and they are easily checked to be Q-linearly independent. It follows that the map B(0) :
U/⟨ (i), (ii) ⟩ →W is injective. □

Proof of Lemma 3.11. The module U := Ua1,a1 is free, and a basis is obtained from the following
list by deleting zeroes and fixing signs among repetitions:

(3.15)

V

(a1, x, y ; a1, x̃, ỹ) with x, y ∈ S \ {a1, b1}
Thus, we get a basis {u(x, y)}x,y indexed by unordered pairs {x, y} ⊂ S \ {a1, b1} such that
x ̸= ỹ, up to the involution {x, y} 7→ {x̃, ỹ}, and where u(x, y) = ±

V

(a1, x, y ; a1, x̃, ỹ).
For any q, r ∈ {a3, . . . , ag, b3, . . . , bg} with q ̸= r̃, we have the following element of type (∗):

T(a1 ; a2, q, r) = ±u(a2, q)± u(a2, r)± u(q, r̃).

Hence, U/⟨ (∗) ⟩ is generated by the elements u(x, y) such that the pair {x, y} contains a2 or b2.
Furthermore, for any r ∈ {b4, . . . , bg}, considering the elements

T(a1 ; a2, b3, r) = ±u(a2, b3)± u(a2, r)± u(b3, r̃)

T(a1 ; r̃, a2, b3) = ±u(r̃, a2)± u(r̃, b3)± u(a2, a3)

shows that u(a2, r) is modulo (∗) a linear combination of

(3.16) u(a2, q) for q ∈ {a3, a4, . . . , ag, b3}.
Hence the quotient module U/⟨ (∗) ⟩ is generated by (3.16).

The Q-vector space W :=Wa1,a1
has the basis {w(x)}x defined by w(x) := (a1 ∧ x) · (a1 ∧ x̃)

and indexed by the elements x ∈ S \ {a1, b1}, up to the involution x 7→ x̃. The map B(0) :
U/⟨ (∗) ⟩ → W sends u(x, y) to ±

(
ε(x)w(y) + ε(y)w(x)

)
. Hence, the images of the generators

(3.16) are
±
(
ε(q)w(a2) + w(q)

)
for q ∈ {a3, a4, . . . , ag, b3}.

Those vectors being linearly independent, the map B(0) : U/⟨ (∗) ⟩ →W is injective. □

3.3.4. A G-generating system of K ∩ U3. As in the proof of Lemma 3.5, we finally consider the
subspace W2 of S2(Λ2HQ)/Λ4HQ generated by the elements (s1 ∧ s2) · (s3 ∧ s4) with si ∈ S,
showing two (disjoint) contractions. We are interested in the kernel K ∩ U3 of the map

B =
(
B(0), B(2)

)
: U3 −→W2 ⊕Q

defined on the module U3 = V1,2 ⊕ V3. Note that, in contrast with the previous cases, the

component B(2) of B plays here a role (although it is quite little).
The next lemma proves that (R3) is a G-generating system of K ∩ U3.

Lemma 3.12. The module K ∩ U3 is generated by

(i) D(x, x̃ ; c, c̃ ; y, ỹ) with x, x̃, y, ỹ, c, c̃ pairwise different,
(ii) D(x, x̃ ; c1, c2 ; y, ỹ) with x, x̃, y, ỹ, c1,‹c1, c2,‹c2 pairwise different,
(iii) IHX3(p, q ; r) with p, p̃, q, q̃, r, r̃ pairwise different,
(iv) IHX′

3(p, q ; r, s) with p, p̃, q, q̃, r, r̃, s, s̃ pairwise different.

Proof. We endow U := U3 and W := W2 with the following filtrations. First, observe that the
map N : S → {1, . . . , g} defined by N(ai) = N(bi) = i induces an increasing filtration

∅ = F0S ⊂ F1S ⊂ · · · ⊂ Fg−1S ⊂ FgS = S

of the set S, where FkS consists of the s ∈ S with N(s) ≤ k. Thus, we get increasing filtrations

{0} = F0U ⊂ F1U ⊂ · · · ⊂ Fg−1U ⊂ FgU = U

{0} = F0W ⊂ F1W ⊂ · · · ⊂ Fg−1W ⊂ FgW =W

of the module U and the Q-vector space W , respectively. Specifically, for every k ∈ {1, . . . , g},
the module FkU is generated by the elements

(3.17) u(p, q, r) :=

V

(p, q, r ; p̃, q̃, r̃) with p, q, r ∈ FkS pairwise different,

and

(3.18) u′(r; p, q) :=

V

(p, p̃, r ; r̃, q, q̃) with p, q, r ∈ FkS and p, p̃, q, q̃, r, r̃ pairwise different.

Similarly, for every k ∈ {1, . . . , g}, the Q-vector space FkW is generated by the elements

w(p, q) := (p ∧ q) · (p̃ ∧ q̃) with p, q ∈ FkS and p ̸= q.
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For future use, we compute the map B(0) : U →W in terms of those generators:

B(0)
(
u(p, q, r)

)
= ε(p)w(q, r) + ε(q)w(p, r) + ε(r)w(p, q),(3.19)

B(0)
(
u′(r; p, q)

)
= ε(r)w(p, q)− ε(r)w(p, q̃).(3.20)

Since we have B(0)(FkU) ⊂ FkW , there is a map GrB(0) : GrU → GrW on the associated
graded, and we set L := ker

(
GrB(0)

)
. The filtration on U induces a filtration on K ∩ U , by

setting Fk(K ∩ U) := K ∩ (FkU). By definition of K, the inclusion of K ∩ U in U induces an
injective map

κ : Gr(K ∩ U) −→ L.

Let I be the submodule of U generated by the elements (i),(ii),(iii),(iv) of the statement, and
endow I with the filtration defined by FkI := I ∩ (FkU). The inclusion of I in K ∩ U induces
an injective map

ι : Gr I −→ Gr(K ∩ U).

We claim two things:

the composition κk ◦ ιk : Grk I → Lk is surjective for k ≥ 4;(3.21)

we have F3I = F3(K ∩ U).(3.22)

Claim (3.21) will imply that ιk is surjective for every k ≥ 4, from which we will deduce that
K ∩ U = I + F3(K ∩ U); then, with claim (3.22), we will conclude that K ∩ U = I which will
prove the lemma.

We first prove (3.21), fixing k ∈ {4, . . . , g}. Since the maps ι and κ are injective, the quotient
modules Grk I = FkI/Fk−1I and Grk(K ∩ U) = Fk(K ∩ U)/Fk−1(K ∩ U) can be viewed as
submodules of Grk U = FkU/Fk−1U . Thus, claim (3.21) is equivalent to the injectivity of

(3.23) Φ := Grk B
(0) :

Grk U

Grk I
−→ GrkW.

The quotient module Grk U is generated by the (classes of) elements u(q, t, t̃), u(q, r, t), u′(t; q, r),
u′(r; q, t) with q, r, t ∈ S such that N(t) = k, N(q) < k, N(r) < k. This induces a generating
system {

u(q, t, t̃)
∣∣ q, t ∈ S, N(t) = k, N(q) < k

}
(3.24)

∪
{
u(q, q̃, t)

∣∣ q, t ∈ S, N(t) = k, N(q) < k
}

(3.25)

∪
{
u(q, r, t)

∣∣ q, r, t ∈ S, N(t) = k, N(q) < k, N(r) < k, N(q) ̸= N(r)
}

(3.26)

∪
{
u′(t; q, r)

∣∣ q, r, t ∈ S, N(t) = k, N(q) < k, N(r) < k, N(q) ̸= N(r)
}

(3.27)

∪
{
u′(r; q, t)

∣∣ q, r, t ∈ S, N(t) = k, N(q) < k, N(r) < k, N(q) ̸= N(r)
}

(3.28)

of Grk U/Grk I, which we reduce as follows:

• For any t, q, r, s ∈ S such that N(t) = k, N(q) < k, N(r) < k, N(s) < k and
N(q), N(r), N(s) are pairwise different, the element

D(q, q̃ ; t, s ; r, r̃) = ε(t)u′(t; q, r)− ε(s)u′(s; q, r)

is of type (ii), which shows that u′(t; q, r) = 0. Thus, all the generators of Grk U/Grk I
of type (3.27) are actually zero.

• For any t, q, r ∈ S such that N(t) = k, N(q) < k, N(r) < k and N(q) ̸= N(r), the
element

IHX3(t, q ; r) = ε(r)u′(q; t, r) + ε(q)u(r, r̃, t)− ε(r)u′(t; q, r)− ε(t)u(r, r̃, q)

is of type (iii), which (using the previous item) implies that

(3.29) u′(q; t, r) = −ε(q)ε(r)u(r, r̃, t).
Thus, all the generators of type (3.28) are repeated in (3.25), so that they can be removed.

• For any t, p, q ∈ S such that N(t) = k, N(p) < k, N(q) < k and N(p) ̸= N(q), the
element

IHX3(p, q ; t) = ε(t)u′(q; p, t) + ε(q)u(t, t̃, p)− ε(t)u′(p; q, t)− ε(p)u(t, t̃, q)

is of type (iii), which (using (3.29)), implies that

u(t, t̃, p) = ε(t)ε(p)u(p, p̃, t)− ε(t)ε(p)u(q, q̃, t) + ε(p)ε(q)u(t, t̃, q).
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Thus, setting q := a1 and t := ak in the above equation, we see that the submodule of
Grk U/Grk I generated by (3.24) and (3.25) is actually generated by the single element
u(a1, ak, bk) of (3.24) and (3.25).

• For any t, q, r, s ∈ S such that N(t) = k, N(q) < k, N(r) < k, N(s) < k and
N(q), N(r), N(s) are pairwise different, the element

IHX′
3(t, q ; r, s) = ε(q)u(t, r, s)− ε(t)u(q, r, s)− ε(s)u(r̃, t̃, q)

−ε(r)u(s, t̃, q)− ε(r)u′(q; s, t) + ε(s)u′(t; q, r)

is of type (iv), which (using (3.29)) implies that

(3.30) ε(q) u(t, r, s) + ε(s)u(r, t, q̃) + ε(r)u(s̃, t, q̃) + ε(r)ε(s)ε(q)u(s, s̃, t) = 0.

Thus, setting (t, r) := (ak, a1) in the above equation, we get

u(s̃, q̃, ak) = −ε(s)u(q̃, a1, ak)− ε(q)u(s, a1, ak)− ε(s)ε(q)u(s, s̃, ak),

and, setting (t, s) := (ak, a1) in the same equation, we get

u(q̃, b1, ak) = −ε(q)u(b1, a1, ak)− ε(r)u(r, q̃, ak)− ε(q)ε(r)u(r, a1, ak).

The above two equations show that, in the presence of (3.24) and (3.25), the generators
of type (3.26) can be reduced to those of the form u(q, a1, ak) with q ∈ S such that
1 < N(q) < k. Furthermore, by setting (q, r, s, t) := (aj , a1, a2, ak) in (3.30) for every
j ∈ {3, . . . , k − 1}, we obtain

u(bj , a1, ak) = −u(a2, b2, ak)− u(b2, ak, bj)− u(a2, a1, ak)

and, by setting (q, r, s, t) := (a2, a1, aj , ak) in (3.30), we also get

u(b2, ak, bj) = −u(aj , a1, ak)− u(b2, a1, ak)− u(aj , bj , ak).

We deduce that, in the presence of (3.24) and (3.25), the generators of type (3.26) can
be reduced to those of the form u(b2, a1, ak) and u(aj , a1, ak) with j ∈ {2, . . . , k − 1}.

It follows from the above discussion that Grk U/Grk I is generated by the following elements:

u(a1, ak, bk), u(ai, bi, ak) with i < k, u(b2, a1, ak), u(aj , a1, ak) with 1 < j < k.

For p, q ∈ S with N(p) ≤ k,N(q) ≤ k, let w(p, q) be the class of w(p, q) in GrkW . According
to (3.19), the values of the map (3.23) on this generating set are as follows:

Φ
(
u(a1, ak, bk)

)
= w(ak, bk) + w(a1, bk)− w(a1, ak),

Φ
(
u(ai, bi, ak)

)
= w(bi, ak)− w(ai, ak),

Φ
(
u(b2, a1, ak)

)
= −w(a1, ak) + w(b2, ak),

Φ
(
u(aj , a1, ak)

)
= w(a1, ak) + w(aj , ak).

Using the fact that
{
w(ai, ak) | i < k

}
∪
{
w(bi, ak) | i < k

}
∪
{
w(ak, bk)

}
is a basis of GrkW , we

easily check that the above values of Φ are Q-linearly independent. Claim (3.21) follows.
We now prove (3.22). The quotient Q := F3U/F3I is generated by the classes

(3.31) u(p, q, r) with p, q, r ∈ F3S pairwise different

and the classes

(3.32) u′(r; p, q) with p, q, r ∈ F3S such that N(p), N(q), N(r) are pairwise different

of elements in F3U of type (3.17) and (3.18), respectively. For any p, q, r ∈ F3S such that
N(p), N(q), N(r) are pairwise different, the element

D(p, p̃ ; q, q̃ ; r, r̃) = ε(q)u′(q; p, r) + ε(q)u′(q̃; p, r)

is of type (i), so that we have u′(q; p, r) = −u′(q̃; p, r) ∈ Q. Thus, among the generators of Q of
type (3.32), we can reduce ourselves to u′(a1; a2, a3), u′(a2; a1, a3), u′(a3; a1, a2). Furthermore,
for any p, q, r ∈ F3S such that N(p), N(q), N(r) are pairwise different, the element

IHX3(p, q ; r) = ε(r)u′(q; p, r) + ε(q)u(r, r̃, p)− ε(r)u′(p; q, r)− ε(p)u(r, r̃, q)

is of type (iii), so that ε(q)u(r, r̃, p) = −ε(r)u′(q; p, r) + ε(r)u′(p; q, r) + ε(p)u(r, r̃, q) ∈ Q;
hence, among the generators of Q of type (3.31), we can remove u(a1, b1, a2), u(a2, b2, a3) and
u(a3, b3, a1). Consequently, the module Q is generated by the following 10 elements:

u(a1, a2, a3), u(b1, a2, a3), u(a1, b2, a3), u(a1, a2, b3),
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u(a1, b1, a3), u(a2, b2, a1), u(a3, b3, a2), u′(a1; a2, a3), u′(a2; a1, a3), u′(a3; a1, a2).

According to (3.19) and (3.20), the values of the map B : Q → F3W ⊕ Q (which is induced by
B : F3U → F3W ⊕Q) on this generating set are as follows:

B
(
u(a1, a2, a3)

)
=

(
w(a2, a3) + w(a1, a3) + w(a1, a2) , −1/4

)
B
(
u(b1, a2, a3)

)
=

(
− w(a2, a3) + w(a1, b3) + w(a1, b2) , +1/4

)
B
(
u(a1, b2, a3)

)
=

(
w(a2, b3)− w(a1, a3) + w(a1, b2) , +1/4

)
B
(
u(a1, a2, b3)

)
=

(
w(a2, b3) + w(a1, b3)− w(a1, a2) , +1/4

)
B
(
u(a1, b1, a3)

)
=

(
w(a1, b3)− w(a1, a3) + w(a1, b1) , +1/4

)
B
(
u(a2, b2, a1)

)
=

(
w(a1, b2)− w(a1, a2) + w(a2, b2) , +1/4

)
B
(
u(a3, b3, a2)

)
=

(
w(a2, b3)− w(a2, a3) + w(a3, b3) , +1/4

)
B
(
u′(a1; a2, a3)

)
=

(
w(a2, a3)− w(a2, b3) , 0

)
B
(
u′(a2; a1, a3)

)
=

(
w(a1, a3)− w(a1, b3) , 0

)
B
(
u′(a3; a1, a2)

)
=

(
w(a1, a2)− w(a1, b2) , 0

)
Using that

{
w(ai, aj) | 1 ≤ i < j ≤ 3

}
∪
{
w(ai, bi) | 1 ≤ i ≤ 3

}
∪
{
w(ai, bj) | 1 ≤ i < j ≤ 3

}
is

a basis of the Q-vector space F3W , it is easily checked that the above vectors of F3W ⊕ Q are
Q-linearly independent. Therefore, the map B is injective. □

3.4. Vanishing of J on K. We now prove that the map J : Λ2(Λ3H) → Γ2I/Γ3I vanishes on
the elements of type (Ri) with 0 ≤ i ≤ 3, which have been identified in Theorem 3.6. Again,
we use the action of the subgroup G = G(S) of Sp(H) defined at (3.7). Since the elements
(Ri) constitute a G-generating system of K and since J is G-equivariant, this will prove that
J(K) = 0 and conclude the proof of Theorem B.

3.4.1. BP-maps and PB-maps. We start by fixing notations for some specific elements of the
Torelli group I, which we shall need in the sequel.

The first class of elements of I, which we have already met in previous sections and are
called BP-maps by Johnson, are opposite Dehn twists TεT

−1
δ along a pair (ε, δ) of disjoint and

cobounding, simple closed curves. In fact, we shall only need such “B”ounding “P”airs (ε, δ) that
delimitate a subsurface of genus 1 in Σ. The data of a BP-map TεT

−1
δ of genus 1 is encoded by

giving a chain of 3 circles in Σ, whose neighborhood is a subsurface of genus 1 with 2 boundary
components, as shown below:

(3.33) ,
τ1
(
TεT

−1
δ

)
= −x ∧ y ∧ e = x ∧ y ∧ z

where x = {X}, y = {Y }, z = {Z}, e = {ϵ}.

(The value of τ1 on TεT
−1
δ is derived directly from (2.2).)

The second class of elements of I are called PB-maps, since they arise from embeddings of
the commutator subgroup of the “P”ure “B”raid group into I [28]. Specifically, a PB-map in I
is encoded by a Y -shaped graph in the surface Σ, which gives a 2-holed disk in Σ and defines a
commutator of two Dehn twists [Tε, Tδ], as shown below:

(3.34) ,
τ1
(
[Tε, Tδ]

)
= −x ∧ y ∧ z

where x = {X}, y = {Y }, z = {Z}.

(The value of τ1 on [Tε, Tδ] can be derived, for instance, from the exact relationship between
Milnor invariants and Johnson homomorphisms [6]; BP-maps also appear in [29] under the name
“commutators of simply intersecting pairs”.)
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Recall that N : S → {1, . . . , g} is the map defined by N(ai) = N(bi) = i, and observe that
any elementary trivector s1 ∧ s2 ∧ s3 (with s1, s2, s3 ∈ S pairwise different) can be realized as
the value of τ1 on

• a PB-map if N(s1), N(s2), N(s3) are pairwise different,
• a BP-map if N(si) = N(sj) for some i ̸= j.

Example 3.13. The elementary trivectors a1∧a2∧ b3 and a1∧ b1∧ b3 are (up to signs) realized
by the following PB-map and BP-map, respectively:

■

3.4.2. Vanishing of J on the elements (R0). All the elements of the family (R0) are of the formV

(s1, s2, s3 ; s
′
1, s

′
2, s

′
3) where the elementary trivectors s1 ∧ s2 ∧ s3 and s′1 ∧ s′2 ∧ s′3 are realized

by BP-maps or PB-maps with disjoint supports: specifically, the realizations are shown (up to
a sign) in Table 1. Therefore, all the elements of (R0) belong to ker(J).

V

(a1, a2, a3 ; a4, a5, a6)

V

(a1, b1, a2 ; a3, a4, a5)

V

(a1, b1, a2 ; a3, b3, a4)

V

(a1, a2, a3 ; a3, a4, a5)

V

(a1, b1, a2 ; a2, a3, a4)

V

(a1, b1, a2 ; a2, a3, b3)

V

(a1, a2, a3 ; a2, a3, a4)

Table 1. Realizations of elementary trivectors with no contraction

Since (R0) is a G-generating system of K ∩ U0, we obtain the following more general result.

Lemma 3.14. The submodule K ∩ U0 of Λ2(Λ3H) is contained in ker(J).

3.4.3. Vanishing of J on the elements (R1). We deduce from the following lemma that the first
six elements of (R1) are in the kernel of J .

Lemma 3.15. Let x, y, c1, c2, u, v ∈ S be pairwise different, and assume that c1 ̸= ‹c2 too. Then
we have D(x, y ; c1, c2 ; ũ, ṽ) ∈ ker(J).

Proof. Let η := ε(c1) ε(c2). We claim that

C :=

V

(x, y, c1 + c2 ; −η ‹c1 + ‹c2, ũ, ṽ) ∈ ker(J).

Since

V

(x, y, c1 ; ‹c2, ũ, ṽ) and

V

(x, y, c2 ; ‹c1, ũ, ṽ) belong to ker(J) by Lemma 3.14, we deduce
that −η

V

(x, y, c1 ; ‹c1, ũ, ṽ) + V

(x, y, c2 ; ‹c2, ũ, ṽ) = −ε(c2)D(x, y ; c1, c2 ; ũ, ṽ) does too.
We now prove the above claim. If c2 /∈ {x̃, ỹ} and c1 ̸∈ {ũ, ṽ}, then we consider the symplectic

transformation T that maps (c1,‹c1, c2,‹c2) to (c1+c2,‹c1, c2,−η ‹c1+‹c2) and fixes all other elements
of S; then T maps V

(x, y, c1 ; ‹c2, ũ, ṽ) ∈ ker(J)
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to C, so that C ∈ ker(J). If we have c1 /∈ {x̃, ỹ} and c2 ̸∈ {ũ, ṽ}, we can proceed similarly by
exchanging the roles of c1 and c2.

We now assume that none of the above two conditions occur, i.e. we have {c1, c2} = {x̃, ỹ}
or (exclusively) {c1, c2} = {ũ, ṽ}. For instance, we assume that (c1, c2) = (x̃, ỹ), the other cases
being treated similarly. Then

C =

V

(‹c1,−η‹c1 + ‹c2, c1 + c2 ; −η‹c1 + ‹c2, ũ, ṽ) = T ·

V

(‹c1,‹c2, c1 ; ‹c2, ũ, ṽ) ,
and we deduce from Lemma 3.14 that C belongs to ker(J) in the present case too. □

Besides, we have the following variant of Lemma 3.15 (which will be used later).

Lemma 3.16. Let x, y, c, u, v ∈ S be pairwise different, and assume that c ̸∈ {x̃, ỹ, ũ, ṽ}. Then
we have D(x, y ; c, c̃ ; ũ, ṽ) ∈ ker(J).

Proof. Let T be the symplectic transformation that maps c to c+ c̃ and fixes all other elements
of S. We have

T ·

V

(x, y, c ; c, ũ, ṽ)−

V

(x, y, c ; c, ũ, ṽ)−

V

(x, y, c̃ ; c̃, ũ, ṽ) = ε(c)D(x, y ; c, c̃ ; ũ, ṽ)

and we conclude with Lemma 3.14. □

The next lemma deals with the seventh (and last) element of (R1).

Lemma 3.17 (Gervais & Habegger). We have IHX1(a1; a2, a3, a4 ; b1) ∈ ker(J).

Proof. This has been proved by Gervais and Habegger [6] but, for the sake of completeness, we
repeat their arguments (with some variations). We focus on a subsurface of Σ of genus 4 which
contains the based loops α1, β1, . . . , α4, β4 of Figure 1. This subsurface (union a rectangle) is
shown in Figure 3 as the cylinder D× [0, 1] over a 4-holed disk D: the curves X,Y, Z (shown in
Figure 3) lie on D×{1} and we denote by X0, Y0, Z0 the corresponding curves on D×{0} (not
shown in Figure 3).

Figure 3. The curves X,Y, Z and U, V,W on ∂(D × [0, 1])

In the rest of this proof, the Dehn twist TC along a simple closed curve C is simply denoted
by C and, if C is oriented, the homology class {C} ∈ H is denoted by the lower case roman
letter c. By the Hall–Witt identity, we know that[

ZX, [Y,Z]
] [

Y Z, [X,Y ]
] [

XY, [Z,X]
]
= 1 ∈ M.

and, since the Dehn twists along X0, Y0, Z0 commute with those along X,Y, Z, we obtain that[
Z(XX−1

0 ), [Y,Z]
] [

Y (ZZ−1
0 ), [X,Y ]

] [
X(Y Y0)

−1, [Z,X]
]
= 1 ∈ M.

Note that XX−1
0 , Y Y −1

0 , ZZ−1
0 are BP-maps (of genus 1) while [Y, Z], [X,Y ], [Z,X] are PB-

maps: hence the above identity gives a degree 2 relation in GrΓ I. (See [29] for a systematic use
of Hall–Witt identities in presentations of the group I.) Consequently, the sum(
Z∗ · τ1

(
XX−1

0

))
∧ τ1([Y,Z]) +

(
Y∗ · τ1

(
ZZ−1

0

))
∧ τ1([X,Y ]) +

(
X∗ · τ1

(
Y Y −1

0

))
∧ τ1([Z,X])
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belongs to ker(J). (Here X∗ ∈ Sp(H) denotes the action of the Dehn twist along X.) Using
(3.33) and (3.34), we obtain

Z∗ · τ1
(
XX−1

0

)
= ε b1 ∧ Z∗(u) ∧ b4
= ε b1 ∧ (u+ z) ∧ b4
= ε b1 ∧ ((a1 − a4) + (b3 + b4)) ∧ b4 = ε b1 ∧ (a1 − a4 + b3) ∧ b4

and

τ1([Y, Z]) = η b2 ∧ b4 ∧ b3
respectively. (Here ε and η are fixed signs, which we do not need to determine.) Next, it follows
from Lemma 3.14 that(

Z∗ · τ1
(
XX−1

0

))
∧ τ1([Y,Z]) ≡ −εη

V

(b1, a4, b4 ; b2, b4, b3) mod ker(J);

similarly, we obtain(
Y∗ · τ1

(
ZZ−1

0

))
∧ τ1([X,Y ]) ≡ −εη

V

(b3, a4, b4 ; b1, b4, b2) mod ker(J)

and (
X∗ · τ1

(
Y Y −1

0

))
∧ τ1([Z,X]) ≡ −εη

V

(b2, a4, b4 ; b3, b4, b1) mod ker(J).

Therefore the element

V

(b4, b1, a4 ; b4, b3, b2) +

V

(b4, b3, a4 ; b4, b2, b1) +

V

(b4, b2, a4 ; b4, b1, b3)︸ ︷︷ ︸
IHX1(b4;b1,b3,b2 ; a4)

belongs to ker(J), and we conclude using the G-action. □

Since (R1) is a G-generating system of K ∩ U1, we obtain the following.

Lemma 3.18. The submodule K ∩ U1 of Λ2(Λ3H) is contained in ker(J).

3.4.4. Vanishing of J on the elements (R2). We now deal with the elements of the family (R2)
through the next three lemmas.

Lemma 3.19. The elements IHX2(a1, a2 ; a3 ; b1) and IHX2(a1, a2 ; a3 ; a4) belong to ker(J).

Proof. For all h ∈ {3, . . . , g}, the element
∑h−1

i=1

V

(a1, a2, b2 ; ah, ai, bi) of Λ2(Λ3H) belongs to

ker(J), since a1∧a2∧b2 and
∑h−1

i=1 ah∧ai∧bi can be realized by BP maps (of genus 1 and h−1,
respectively) whose supports are disjoint one from the other. Setting h := 3, we obtain that

(3.35) W :=

V

(a1, a2, b2 ; a3, a1, b1) +

V

(a1, a2, b2 ; a3, a2, b2)

belongs to ker(J). The element of G ≃ Zg
4 ⋊Sg corresponding to the transposition (23) maps

W to IHX2(a1, a2 ; a3 ; b1) which, therefore, is in ker(J) too.
Next, the element of G corresponding to the cycle (1423) transforms W to

E :=

V

(a4, a3, b3 ; a1, a3, b3) +

V

(a4, a3, b3 ; a1, a4, b4)

which, therefore, belongs to ker(J). Let also T be the symplectic transformation that maps
(a4, b2) to (a4 + a2, b2 − b4) and leaves all other elements of S fixed. We have

T · E − E ≡

V

(a2, a3, b3 ; a1, a3, b3) +

V

(a4, a3, b3 ; a1, a2, b4) mod K ∩ U0.

Hence, using Lemma 3.14 and the G-action, we obtain that

IHX2(a1, a2 ; a3 ; a4) =

V

(a1, a3, b3 ; a2, a3, b3)−

V

(a1, a2, a4 ; a3, b3, b4) ∈ ker(J). □

Lemma 3.20. The following five elements belong to ker(J):

S

Å
a1, a2 ;

a2 b1
a3 b3

ã
, S

Å
a1, a2 ;

a2 a4
a3 b3

ã
, S

Å
a1, a2 ;

a4 a5
a3 b3

ã
, S

Å
a1, a2 ;

b1 a4
a3 b3

ã
, S

Å
a1, a2 ;

a4 b4
a3 b3

ã
.

Proof. Consider the element W ∈ ker(J) defined by (3.35), and let T0 be the symplectic trans-
formation that maps (a2, a3) to (a2 + b3, a3 + b2). We have

T0 ·W −W = S

Å
a1, b2 ;

b2 b1
b3 a3

ã
+ D(b3, b2 ; a1, a3 ; b2, a1) +W ′
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where W ′ :=

V

(a1, a2, b2 ; a3, b3, b2)−

V

(a1, b3, a3 ; b2, a3, b3). But, an appropriate element of G

transformsW ′ toW , and we deduce from Lemma 3.15 that S

Å
a1, b2 ;

b2 b1
b3 a3

ã
belongs to ker(J).

Using again the G-action, we conclude that S

Å
a1, a2 ;

a2 b1
a3 b3

ã
is in ker(J) too.

By Lemma 3.15, D := D(a1, a3 ; a2, a4 ; a2, a4) belongs to ker(J). For the symplectic trans-
formation T1 that maps (a3, a4) to (a3 + b4, a4 + b3) and fixes all other elements of S, we have

T1 ·D −D ≡ D1 mod (K ∩ U0 +K ∩ U1)

where

D1 :=

V

(a1, a3, a2 ; b2, a2, b3) +

V

(a1, b4, a2 ; b2, a2, a4)

−

V

(a1, a3, a4 ; b4, a2, b3)−

V

(a1, b4, a4 ; b4, a2, a4) = −S

Å
a1, a2 ;

a2 a3
b4 a4

ã
.

Hence, by Lemma 3.14 and Lemma 3.18, D1 belongs to ker(J). Using the G-action, we deduce

that S

Å
a1, a2 ;

a2 a4
a3 b3

ã
does too.

Proceeding with the same strategy, we consider the symplectic transformation T3 mapping
(a2, b5) to (a2 + a5, b5 − b2) and fixing all other elements of S. We have

T3 · S
Å
a1, a2 ;

a2 a4
a3 b3

ã
− S

Å
a1, a2 ;

a2 a4
a3 b3

ã
= D3 + D(a1, a5 ; a3, a4 ; a2, b2) + D(a1, a5 ; a3, a4 ; a5, b2)

where

D3 := −

V

(a1, a2, a4 ; a5, b2, b4)−

V

(a1, a4, b3 ; a5, b4, a3)

+

V

(a1, a3, b3 ; a5, b3, a3) +

V

(a1, a2, a3 ; a5, b2, b3) = S

Å
a1, a5 ;

a2 a4
a3 b3

ã
.

Therefore, using the G-action, we deduce that S

Å
a1, a2 ;

a4 a5
a3 b3

ã
is in ker(J).

We continue with the symplectic transformation T4 mapping (a2, b4) to (a2 + a4, b4 − b2) and
fixing all other elements of S. We have

T4 · S
Å
a1, a2 ;

a2 b1
a3 b3

ã
− S

Å
a1, a2 ;

a2 b1
a3 b3

ã
= D4 − D(a1, a4 ; a3, b1 ; a2, b2)− D(a1, a4 ; a3, b1 ; a4, b2)

where

D4 := −

V

(a1, a2, b1 ; a4, b2, a1)−

V

(a1, b1, b3 ; a4, a1, a3)

−

V

(a1, a3, b3 ; a4, b3, a3)−

V

(a1, a2, a3 ; a4, b2, b3) = S

Å
a1, a4 ;

a2 b1
a3 b3

ã
.

Therefore, using the G-action, we deduce that S

Å
a1, a2 ;

b1 a4
a3 b3

ã
is in ker(J).

Finally, using again the above transformation T1, an elementary computation shows that the
difference T1 ·

V

(a1, a3, a4 ; a2, a3, a4)−

V

(a1, a3, a4 ; a2, a3, a4) decomposes as

V

(a1, b4, b3 ; a2, a3, a4)+

V

(a1, b4, a4 ; a2, b4, a4)+

V

(a1, a3, b3 ; a2, a3, b3)+

V

(a1, a3, a4 ; a2, b4, b3)

plus a sum of 11 terms which belongs to K ∩U0 +K ∩U1. Using Lemma 3.14 and Lemma 3.18,

we conclude that S

Å
a1, a2 ;

a4 b4
a3 b3

ã
belongs to ker(J). □

Lemma 3.21. We have T(a1 ; a2, a3, a4) ∈ ker(J).

Proof. Let T be the symplectic transformation that maps (a2, b1) to (a2+a1, b1− b2) and leaves
all other elements of S fixed. We have

T · S
Å
a1, a2 ;

a2 a4
a3 b3

ã
− S

Å
a1, a2 ;

a2 a4
a3 b3

ã
=

V

(a1, a2, a3 ; a1, b2, b3)−

V

(a1, a2, a4 ; a1, b2, b4)−

V

(a1, a4, b3 ; a1, b4, a3) ,
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which is −T(a1 ; a2, a4, a3). Using the G-action, we obtain that T(a1 ; a2, a3, a4) ∈ ker(J). □

Since (R2) is a G-generating system of K ∩ U2, we obtain the following.

Lemma 3.22. The submodule K ∩ U2 of Λ2(Λ3H) is contained in ker(J).

3.4.5. Vanishing of J on the elements (R3). We deduce from Lemma 3.15 and Lemma 3.16 that
the first two elements of (R3) belong to ker(J). The following deals with the last two elements
of (R3), and finishes the proof of Theorem B.

Lemma 3.23. The elements IHX3(a1, a2 ; a3) and IHX′
3(a1, a2 ; a3, a4) belong to ker(J).

Proof. Let T1 be the symplectic transformation that maps (a1, a2) to (a1 + b2, a2 + b1), and set

E1 :=

V

(b2, a3, b3 ; b1, a3, b3) +

V

(b2, a2, b1 ; a3, b3, b2) ,

F1 :=

V

(a1, a3, b3 ; b1, a3, b3) +

V

(b2, a3, b3 ; a2, a3, b3)

+

V

(a1, a3, b3 ; b1, a2, b2) +

V

(b2, a3, b3 ; a1, b1, a2) .

We have

T1 · IHX2(a1, a2 ; a3 ; b1)− IHX2(a1, a2 ; a3 ; b1) = E1 + F1.

Since E1 belongs to K ∩ (V1,1+V2) = K ∩U2, it follows from Lemma 3.19 and Lemma 3.22 that
F1 belongs to ker(J). Besides, we have

IHX3(a1, a2 ; a3) = −F1 +

V

(a3, b3, a1 ; b1, a2, b2) +

V

(a3, b3, b1 ; a1, a2, b2)︸ ︷︷ ︸
D(a3,b3 ; a1,b1 ; a2,b2)

.

Thus, an application of Lemma 3.16 shows that J vanishes on IHX3(a1, a2 ; a3).
Finally, consider the symplectic transformation T2 that maps (a2, a3) to (a2+ b3, a3+ b2) and

fixes all other elements of S. We have

T2 · S
Å
a3, a2 ;

a2 a4
a1 b1

ã
− S

Å
a3, a2 ;

a2 a4
a1 b1

ã
≡ E2 mod (K ∩ V1 +K ∩ V2)

where

E2 := −

V

(b2, a2, a4 ; a2, b2, b4)−

V

(a3, b3, a4 ; a2, b2, b4)−

V

(a3, a2, a4 ; b3, b2, b4)

+

V

(b2, a2, a1 ; a2, b2, b1) +

V

(a3, b3, a1 ; a2, b2, b1) +

V

(a3, a2, a1 ; b3, b2, b1)

−

V

(b2, a4, b1 ; a2, b4, a1)−

V

(a3, a4, b1 ; b3, b4, a1)

+

V

(b2, a1, b1 ; a2, b1, a1) +

V

(a3, a1, b1 ; b3, b1, a1) .

It follows from Lemma 3.18 and Lemma 3.22 that E2 is in ker(J). Next, we observe that

E2 = IHX′
3(a1, a4 ; a2, a3) +

V

(a3, b3, a4 ; b4, a1, b1)−

V

(a4, b4, a1 ; b1, a2, b2)

−

V

(b2, a2, a4 ; a2, b2, b4) +

V

(b2, a2, a1 ; a2, b2, b1)

+

V

(b2, a1, b1 ; a2, b1, a1) +

V

(a3, a1, b1 ; b3, b1, a1)

−

V

(a3, b3, a4 ; a2, b2, b4) +

V

(a3, b3, a1 ; a2, b2, b1)

= IHX′
3(a1, a4 ; a2, a3) +

V

(a3, b3, a4 ; b4, a1, b1)−

V

(a4, b4, a1 ; b1, a2, b2)

+IHX3(a1, a4 ; a2)−

V

(a1, b1, a4 ; b4, a2, b2) +

V

(a4, b4, a1 ; b1, a2, b2)

−IHX3(a2, a3 ; a1) +

V

(a2, b2, a3 ; b3, a1, b1)−

V

(a3, b3, a2 ; b2, a1, b1)

−

V

(a3, b3, a4 ; a2, b2, b4) +

V

(a3, b3, a1 ; a2, b2, b1)

= IHX′
3(a1, a4 ; a2, a3) + IHX3(a1, a4 ; a2)− IHX3(a2, a3 ; a1)

+D(a3, b3 ; a4, a2 ; a1, b1) + D(a2, b2 ; a3, b4 ; a1, b1) + D(a3, b3 ; a1, a4 ; a2, b2) .

From the previous paragraph, we know that IHX3(a1, a2 ; a3) belongs to ker(J): so, by the G-
action, IHX3(a1, a4 ; a2) and IHX3(a2, a3 ; a1) do too. Then, it follows from Lemma 3.15 and
the above decomposition of E2 that IHX′

3(a1, a4 ; a2, a3) is in ker(J): using the G-action, so is
IHX′

3(a1, a2 ; a3, a4). □

4. Structure of certain subquotients of the Torelli group

In this section, we derive from Theorem A and Theorem B some explicit descriptions of certain
quotients of (subgroups of) the Torelli group I.
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4.1. The groups Γ2I/Γ3I, K/Γ3I and I/Γ3I. Set D′
2(H) := S2(Λ2H)/Λ4H, and view it as a

lattice of S2(Λ2HQ)/Λ4HQ ≃ D′
2(H)⊗Q. Let also D2(H) be the submodule of S2(Λ2HQ)/Λ4HQ

generated by D′
2(H) and the elements 1

2 (u ∧ v) · (u ∧ v) for all u, v ∈ H. According to [3],
the images τ2([I, I]) and τ2(K) of the second Johnson homomorphism are determined by the
following commutative diagram, with exact rows:

(4.1) [I, I]� _

��

τ2 // D′
2(H)� _

��

TrS // ker
(
ω : S2H ⊗ Z2 → Z2

)
//

��

0

K τ2 // D2(H)
TrΛ // ker

(
ω : Λ2H ⊗ Z2 → Z2

)
// 0

Here, the map S2H ⊗ Z2 → Λ2H ⊗ Z2 is the canonical projection, and the “trace” maps are
defined as follows:

TrS
(
(a ∧ b) · (c ∧ d)

)
:= ω(a, c) b · d+ ω(a, d) b · c+ ω(b, c) a · d+ ω(b, d) a · c,

TrΛ
(
(a ∧ b) · (c ∧ d)

)
:= ω(a, c) b ∧ d+ ω(a, d) b ∧ c+ ω(b, c) a ∧ d+ ω(b, d) a ∧ c,

TrΛ
(1
2
(u ∧ v) · (u ∧ v)

)
:= (1 + ω(u, v)) u ∧ v.

Consider a basis S = {a1, . . . , ag, b1, . . . , bg} of H of the form (2.6), and let ⟨−,−⟩ = ⟨−,−⟩S :
H ×H → Z be the symmetric bilinear form defined by ⟨ai, bj⟩ = δi,j , ⟨ai, aj⟩ = 0, ⟨bi, bj⟩ = 0.
Let also Θ = ΘS : S2(Λ2HQ)/Λ4HQ → Q be the map defined by

Θ
(
(a ∧ b) · (c ∧ d)

)
= ⟨a, d⟩ ⟨b, c⟩ − ⟨a, c⟩ ⟨b, d⟩.

Lemma 4.1. The restriction of Θ (respectively, 2Θ) to ker(TrS) (respectively, to ker(TrΛ))
reduced modulo 4Z does not depend on the choice of the symplectic basis S.

Proof. Since the abelian group ker(TrΛ)/ ker(TrS) is of 2-torsion (for K/[I, I] to have the same

property), it suffices to prove the statement for the restriction of Θ to ker(TrS). Since ker(TrS) =
τ2([I, I]) is the image of the map B(0) : Λ2(Λ3H) → D′

2(H) defined by (3.2), it suffices to check
that the reduction of

θ := Θ
( ∑

i,j∈Z3

ω(xi, yj) (xi+1 ∧ xi+2) · (yj+1 ∧ yj+2)
)

modulo 4 is independent of the choice of S, for any x1, x2, x3, y1, y2, y3 ∈ H. Indeed, this integer

θ =
∑

i,j∈Z3

ω(xi, yj) ⟨xi+1, yj+2⟩ ⟨xi+2, yj+1⟩ −
∑

i,j∈Z3

ω(xi, yj) ⟨xi+1, yj+1⟩ ⟨xi+2, yj+2⟩

should be compared to the integer

θ̃ :=
∑

i,j∈Z3

ω(xi, yj)
(
ω(xi+1, yj+2)ω(xi+2, yj+1)− ω(xi+1, yj+1)ω(xi+2, yj+2)

)

= −3

∣∣∣∣∣∣
ω(x1, y1) ω(x1, y2) ω(x1, y3)
ω(x2, y1) ω(x2, y2) ω(x2, y3)
ω(x3, y1) ω(x3, y2) ω(x3, y3)

∣∣∣∣∣∣
which (obviously) does not depend on S. By decomposing every factor in θ of the form ⟨x, y⟩ as
a sum ω(x, y) + 2 z(x, y) where z(x, y) ∈ Z, and distributing all the products, we easily observe

that θ − θ̃ belongs to 4Z. □

We can now give a complete description of the abelian groups Γ2I/Γ3I and K/Γ3I.

Theorem 4.2. (i) The homomorphism (τ2, 8d
′′) induces an isomorphism

(4.2) Γ2I/Γ3I
≃−→ U′(H)

onto the free abelian group U′(H) :=
{
(T, z) ∈ D′

2(H)⊕ Z : TrS(T ) = 0, 2Θ(T ) ≡ −z mod 8
}
.

(ii) Similarly, the homomorphism (τ2, 8d
′′) induces an isomorphism

(4.3) K/Γ3I
≃−→ U(H)

onto the free abelian group U(H) :=
{
(T, z) ∈ D2(H)⊕ Z : TrΛ(T ) = 0, 2Θ(T ) ≡ −z mod 4

}
.
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Proof. According to Proposition 3.2, we have the commutative diagram

Λ2(Λ3H)
R2

J2

≃
//

B
&&

Γ2I
Γ3I

(τ2,d
′′)

��

S2(Λ2HQ)
Λ4HQ ⊕Q

where, according to Theorem B, the map B is injective: it follows that (τ2, 8d
′′) is injective.

To specify the image of (τ2, 8d
′′), we now need to review the way d′′ can be defined from the

Casson invariant λ of Z-homology 3-spheres. Consider the Heegaard splitting S3 = A ∪ B of
genus g of the 3-sphere, and let j : Σ ↪→ S3 be an embedding of our surface Σ such that j(Σ) is
the Heegaard surface A ∩B = ∂A = −∂B deprived of a small disk D. Then, consider the map

λj : I −→ Z, f 7−→ λ
(
S3(f, j)

)
where S3(f, j) is the homology 3-sphere A ∪f B obtained by “cutting” S3 along its Heegaard
surface and gluing back with (j ◦ f ◦ j−1)∪ idD : ∂B → ∂A. Then, by [21, Lemma 7.2], we have

(4.4) d′′ = −λj
2

− ΘS ◦ τ2
4

.

Here the basis S of H is choosen so that a1, . . . , ag (respectively, b1, . . . , bg) are the homology
classes of a system of meridional curves α1, . . . , αg for the handlebody A (respectively, meridional
curves β1, . . . , βg for the handlebody B).

Let f ∈ Γ2I: then λj(f) is even, since the mod 2 reduction of the Casson invariant is the
Rochlin invariant, which is a finite-type invariant of degree 1. Thus, it follows from (4.4) that
8d′′(f) ≡ −2Θ(τ2(f)) mod 8; hence (τ2(f), 8d

′′(f)) belongs to U′(H). Conversely, let (T, z) ∈
U′(H): we claim that (T, z) is in the image of Γ2I by (τ2, 8d

′′). Indeed, by (4.1), there exists
f ∈ Γ2I such that τ2(f) = T . We know by [22, Prop. 6.4] (see also [21, Prop. 6.3]) the existence
of a ψ ∈ ker τ2 such that λj(ψ) = 1: hence we have ψ2 ∈ Γ2I ∩ker τ2 and λj(ψ

2) = 2. Therefore,
for any ℓ ∈ Z, the element fℓ := fψ2ℓ of Γ2I satisfies

τ2(fℓ) = τ2(f) = T and d′′(fℓ)
(4.4)
= d′′(f)− ℓ.

Thus, taking ℓ := d′′(f) − z/8 ∈ Z, we obtain that the value of fℓ by (τ2, 8d
′′) is (T, z). This

achieves the proof of (i): the homomorphism (4.2) is bijective.
We now prove (ii). The surjectivity of (4.3) is proved similarly to the surjectivity of (4.2).

Moreover, the injectivity of (4.2) implies the injectivity of (4.3) in the following way. Let
k ∈ K be such that τ2(k) = 0 and d′′(k) = 0. The fact that τ2(k) = 0 implies that the
function β(k) : Q → Z2 (image of k by the Birman–Craggs homomorphism) is constant [12, p.
178], and the fact that d′′(k) = 0 implies then that β(k) is null. We deduce from Johnson’s
determination (2.1) of Iab that k ∈ Γ2I. □

The following result, which describes the structure of the group I/Γ3I, is a refinement of
Morita’s description [23, Th. 3.1] of the group I/ ker(τ2).

Theorem 4.3. The extension of groups

1 // K/Γ3I // I/Γ3I
τ1 // Λ3H // 1

is central, and its characteristic class viewed as an element of

H2
(
Λ3H;K/Γ3I

)
≃ Hom

(
Λ2(Λ3H),K/Γ3I

) (4.3)
≃ Hom

(
Λ2(Λ3H),U(H)

)
maps any (x1 ∧ x2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3) to( ∑

i,j∈Z3

ω(xi, yj) (xi+1 ∧ xi+2) · (yj+1 ∧ yj+2),−2

∣∣∣∣∣∣
ω(x1, y1) ω(x1, y2) ω(x1, y3)
ω(x2, y1) ω(x2, y2) ω(x2, y3)
ω(x3, y1) ω(x3, y2) ω(x3, y3)

∣∣∣∣∣∣
)
.

Proof. The centrality of the extension is given by Theorem A. Let s : Λ3H → I/Γ3I be a
setwise section of τ1, and let c : Λ3H × Λ3H → K/Γ3I be the corresponding 2-cocycle, i.e.
c(x|y) = s(x) s(y) s(xy)−1. Then, as an element of Hom(Λ2(Λ3H),K/Γ3I), the cohomology
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class C of c is given by C(x ∧ y) = c(x|y) c(y|x)−1 = [s(x), s(y)]. Thus, we have a commutative
diagram

I/K × I/K
[−,−]

//

τ1×τ1 ≃
��

Γ2I/Γ3I� _

��

Λ3H × Λ3H
C // K/Γ3I

where the composite [−,−] ◦ (τ1 × τ1)
−1 is the map J2. Then the conclusion comes from Propo-

sition 3.2 and the definition of the map B. □

We now give three applications of the previous theorems.

Corollary 4.4. The group I/Γ3I is torsion-free, and its center is K/Γ3I.

Proof. The group I/Γ3I is torsion-free because (by Theorem 4.2 (ii)) it is an extension of a
torsion-free abelian group by another one.

Let f ∈ I with the property that [f, h] ∈ Γ3I for all h ∈ I. Then, we have d′′([f, h]) = 0
for all h ∈ I and, by Proposition 3.2, we obtain that τ1(f) ∈ Λ3H belongs to the kernel of the
bilinear map

b : Λ3H × Λ3H −→ Z, (x1 ∧ x2 ∧ x3, y1 ∧ y2 ∧ y3) 7−→

∣∣∣∣∣∣
ω(x1, y1) ω(x1, y2) ω(x1, y3)
ω(x2, y1) ω(x2, y2) ω(x2, y3)
ω(x3, y1) ω(x3, y2) ω(x3, y3)

∣∣∣∣∣∣ .
But, this form is non-singular since b(s1 ∧ s2 ∧ s3, ‹s1 ∧ ‹s2 ∧ ‹s3) = ±1 for any pairwise-different
s1, s2, s3 ∈ S. Therefore, we have τ1(f) = 0 so that f ∈ K. This proves that the center of I/Γ3I
is contained in K/Γ3I. (The converse inclusion is given by Theorem 4.3.) □

Denote by M = M[0] ⊃ M[1] ⊃ M[2] ⊃ · · · the Johnson filtration of the mapping class
group M. Thus, for every k ≥ 0, M[k] is the subgroup of M acting trivially on the k-th
nilpotent quotient π/Γk+1π of the fundamental group π = π1(Σ, ⋆). So far, we have encountered
M[1] = I, M[2] = K = ker τ1 and M[3] = ker τ2. The inclusion ΓkI ⊂ M[k] holds true for
every k ≥ 1, and determining the gap between the two filtrations is an important question: thus,
the problem is to determine the kernel and the image of the induced homomorphism

(4.5) ΓkI/Γk+1I −→ M[k]/M[k + 1].

In degree k = 1, the kernel M[2]/Γ2I of (4.5) is isomorphic to the 2-torsion group B≤2(Q)
via the Birman–Craggs homomorphism β. The following, which identifies the kernel of (4.5) for
k = 2, is a direct consequence of Theorem 4.2 (i).

Corollary 4.5. We have (Γ2I ∩M[3])/Γ3I ≃ Z via d′′.

By [10], the map (4.5) is surjective in degree 1; but it is not in degree 2 since β induces an
isomorphism between M[2]/(M[3] · Γ2I) and B≤2(Q)/B≤0(Q) [30, Prop. 3.3]. The following
gives the surjectivity of (4.5) in degree 3.

Corollary 4.6. We have M[3] = M[4] · Γ3I.

Proof. Let f ∈ M[3]. By [2, Th. A], there exists an element ψ ∈ M[4] such that λj(ψ) = −1,
which implies that 2d′′(ψ) = 1 by (4.4). We also have that 2d′′(M[3]) ⊂ Z, hence setting k :=

ψ2d′′(f) ∈ M[4], we obtain that fk−1 ∈ M[3] and d′′(fk−1) = 0. It follows from Theorem 4.2 (ii)
that fk−1 belongs to Γ3I. □

4.2. Relation to the monoid of homology cylinders. Let IC := IC(Σ) be the monoid of
homology cylinders over the surface Σ: its neutral element is the trivial cylinder Σ × [−1,+1],
and its operation is the “stacking product”. The reader is referred to the survey paper [16] for
the precise definition of IC, and an overwiew of its relationship with the study of the Torelli
group. Here, we simply recall a few facts and some notations about homology cylinders:

• The monoid IC comes with a sequence of Yk-equivalence relations (for k ≥ 1), which are
defined by surgery techniques.

• The Y -filtration IC = Y1IC ⊃ Y2IC ⊃ Y3IC ⊃ · · · on the monoid IC is defined by
YkIC := {M ∈ IC :M is Yk-equivalent to Σ× [−1,+1]}.

• For every k ≥ 1, the quotient monoid IC/Yk is actually a group.
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• The “mapping cylinder” construction defines a monoid homomorphism c : I → IC,
which is injective and maps the lower central series to the Y -filtration.

It is an important problem to compare the lower central series of I with the pull-back by c
of the Y -filtration. In the lowest (non-trivial) degree, it is known that the homomorphism
c : I/Γ2I → IC/Y2 induced by c is an isomorphism [9, 20]. In the next degree, the group IC/Y3
has been given a complete description in [21, Th. 5.8], in the same spirit of Theorem 4.3 and
in terms of “symplectic Jacobi diagrams”; but the question of its comparison with the group
I/Γ3I was left open. We can now answer this question.

Theorem 4.7. There is an exact sequence of groups

(4.6) 1 // I/Γ3I
c // IC/Y3

α // S2H
ω mod 2 // Z2

// 1

where α denotes the “quadratic part” of the relative Alexander polynomial of homology cylinders,
as defined in [21, §3.2].

Proof. Some of the homomorphisms that we considered in the previous subsections on (subgroups
of) I extend to (submonoids of) IC. Specifically, we shall need the following:

• The first Johnson homomorphism extends to τ1 : IC → Λ3H, and encodes the action of
IC on π/Γ3π; we denote its kernel by KC := KC(Σ).

• The second Johnson homomorphism extends to τ2 : KC → D2(H), and encodes the
action of KC on π/Γ4π.

• The second core of the Casson invariant extends to d′′ : KC → Q, and formula (4.4)
generalizes to

(4.7) d′′ = −λj
2

− Θ̌S ◦ α
4

− ΘS ◦ τ2
4

,

where λj : IC → Z measures the Casson invariant after the “insertion” of homology

cylinders, and Θ̌S : S2H → Q is a certain homomorphism depending on the choice of
the basis S of H.

We prove the injectivity of c : I/Γ3I → IC/Y3. Let f ∈ I whose mapping cylinder c(f) is
Y3-equivalent to the trivial cylinder. Since the action of IC on π/Γ4π is preserved by Y3-surgery,
we have f ∈ K and τ2(f) = 0. Since the Casson invariant is preserved by Y3-surgery, we also
have d′′(f) = 0. It follows from the injectivity of (4.3) in Theorem 4.2 that f belongs to Γ3I.

That the image of c : I/Γ3I → IC/Y3 is contained in kerα is given by [21, Prop. 3.13]. To
prove the converse inclusion, let M ∈ IC satisfying α(M) = 0. Since τ1 : I → Λ3H is surjective,
we observe that IC = KC · c(I): thus, there is an f ∈ I such that M0 :=M · c(f−1) belongs to
KC. Next, according to [4, Prop. 6.1], we have the commutative diagram

(4.8) KC α //

τ2

��

S2H

p

����

D2(H)
TrΛ
// Λ2H ⊗ Z2

where the projection p maps h · k to (h ∧ k mod 2) for all h, k ∈ H. Therefore, the fact

that α(M0) = α(M) = 0 implies that τ2(M0) ∈ kerTrΛ; besides, we deduce from (4.7) that
8d′′(M0) ≡ −2Θ(τ2(M0)) mod 4. Then, it follows from the surjectivity of (4.3) in Theorem 4.2
that there exists u ∈ K such that d′′(u) = d′′(M0) and τ2(u) = τ2(M0). As a consequence of [21,
Th. A], we deduce that c(u) is Y3-equivalent to M0. Hence we obtain that

{M} =
{
M0 c(f)

}
=
{
c(uf)

}
∈ IC/Y3

belongs to the image of c.
Finally, the sequence (4.6) is also exact at S2H for the following reasons. The identity

IC = KC ·c(I) implies that α(IC) = α(KC). We know from [7, Th. 3] that the map τ2 in (4.8) is
surjective, and we deduce from [21, Prop. 3.13] that α(KC) contains ker p = ⟨h2 |h ∈ H⟩. Thus,
we conclude that

α(KC) = α(KC) + ker p = p−1
(
TrΛ(D2(H))

)
(4.1)
= p−1

(
kerω : Λ2H ⊗ Z2 → Z2

)
=
(
ker(ω mod 2) : S2H → Z2

)
.

□
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