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Abstract. These are the notes of the course “Mapping class groups, braid groups and formality” held

in Strasbourg during the second semester of the academic year 2014–2015 (Master “Mathématiques
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1. Review of surfaces and curves

In this section, we assume a certain familiarity of the student with the basics of algebraic topology.
Textbooks in algebraic topology include [Bre93] and [Hat02]. We shall use the following notations:

Dn := {x ∈ Rn : x2
1 + · · ·+ x2

n ≤ 1}, the n-dimensional disk ;

Sn := {x ∈ Rn+1 : x2
1 + · · ·+ x2

n+1 = 1}, the n-dimensional sphere.

1.1. Surfaces. Here is our definition of a “surface.”

Definition 1.1. A surface Σ is a 2-dimensional topological manifold, possibly with boundary. The
interior of Σ is int(Σ) := Σ \ ∂Σ where ∂Σ denotes the boundary of Σ.

We shall not review here the definition of a manifold with boundary (see for instance [Bre93] or [Hir76]).
We only recall that it involves the notion of “atlas”: at any point x ∈ Σ, there is a “chart” (U,ϕ)
consisting of an open neighborhhood U of x and a homeomorphism ϕ : U → ϕ(U) onto an open subset
ϕ(U) of R× R≥0. By definition, x ∈ ∂Σ if and only if ϕ(x) ∈ R× {0}. If two charts (U,ϕ) and (V, ψ)
are given at the same point, then we can consider the “coordinate change”

(1.1) ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V )

which is a homeomorphism from an open subset of R× R≥0 to another one.
In these lectures, unless otherwise specified, we assume that a surface Σ has the following properties:

(i) Σ is connected;
(ii) Σ is compact;

(iii) Σ is orientable.

Some comments about the last two conditions are in order:

(ii) implies that ∂Σ consists of finitely many copies of the circle S1; if ∂Σ = ∅, then the surface Σ
is said to be closed ;

(iii) means that any coordinate change of Σ should be “orientation-preserving”; this property can
be defined using homology but, in dimension 2, it is equivalent to say that the Moebius strip

can not be embedded in Σ; by condition (i), Σ has exactly two orientations; an orientation on
a surface Σ induces an orientation on any connected component of ∂Σ (and vice-versa):

Example 1.2. Here are two “elementary” closed surfaces:

the sphere S2 the torus S1 × S1

�

We define three operations which we can perform on a surface:

(i) given a surface Σ, we can remove a disk from Σ: the new surface is

Σ◦ := Σ \ int(D)

where D ⊂ int(Σ) is a closed disk;
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(ii) given two surfaces Σ1 and Σ2, with a boundary component δi ⊂ ∂Σi specified on each, we can
do the gluing

Σ1 ∪
δ1=δ2

Σ2 := (Σ1 t Σ2)/ ∼

where ∼ is the equivalence relation identifying any x1 ∈ δ1 to ϕ(x1) ∈ δ2, for a fixed homeo-
morphism ϕ : δ1 → δ2;

(iii) given two surfaces Σ1 and Σ2, we can construct the connected sum

Σ1]Σ2 :=
(
Σ1 \ int(D1)

)
∪

∂D1=∂D2

(
Σ2 \ int(D2)

)
where Di ⊂ int(Σi) is a closed disk.

The above operations are well-defined in the following sense:

(i) the homeomorphism type of Σ◦ does not depend on the choice of D;
(ii) the homeomorphism type of Σ1 ∪δ1=δ2 Σ2 does not depend on the choice of ϕ;

(iii) consequently, Σ1]Σ2 is also well-defined up to homeomorphism.

Furthermore, these operations can be defined for oriented surfaces:

(i) an orientation on Σ restricts to a unique orientation on Σ◦;
(ii) if Σ1 and Σ2 are oriented and if ϕ is orientation-reversing, then there is a unique orientation

on Σ1 ∪δ1=δ2 Σ2 that is compatible with those of Σ1 and Σ2;
(iii) consequently, there is a unique orientation on Σ1]Σ2 that is compatible with those of Σ1 and Σ2.

We can now construct infinitely many surfaces out of S2 and S1 × S1 using the above operations.

Definition 1.3. Set Σ0 := S2 and, for any integer g ≥ 1, set

Σg := (S1 × S1)] · · · ](S1 × S1)︸ ︷︷ ︸
g times

.

Set Σg,0 := Σg and, for any integer b ≥ 1, let Σg,b be the surface obtained from Σg by removing b disks.

Of course, the surface Σg,b is only defined up to homeomorphism, but we can also fix a “standard”
surface Σg,b ⊂ R3 once and for all, and orient it, as shown below:

+

· · ·

· · · · · · · · ·

1 b

1 g

Theorem 1.4. For any (connected, compact, orientable) surface S, there exists a unique pair (g, b) ∈
Z≥0 × Z≥0 such that S is homeomorphic to Σg,b.

The unique integer g ≥ 0 such that S ∼= Σg,b for some b ≥ 0 is called the genus of S.

Sketch of proof. We prove the unicity. Let (g1, b1), (g2, b2) ∈ Z≥0 × Z≥0 be such that Σg1,b1
∼= Σg2,b2 :

we must show that g1 = g2 and b1 = b2. We have ∂Σg1,b1
∼= ∂Σg2,b2 and, since the number of connected

components is a topological invariant, we obtain b1 = b2. According to Exercices 1.1–1.2, we have

gi =
1

2

(
rank H1(Σgi,bi ;Z)−max(bi − 1, 0)

)
.

Since the homology is a topological invariant, we have H1(Σg1,b1 ;Z) ' H1(Σg2,b2 ;Z) and we conclude
that g1 = g2.

We now sketch the proof of the existence. Let S be a surface: we must prove that S ∼= Σg,b for some
g, b ≥ 0. We first consider the case where ∂S = ∅ and we accept the following classical result [Rad25].

Theorem. (Radó 1925) Any closed surface S has a triangulation.

This result may seem obvious at a first glance, but it is actually quite difficult to prove: see for instance
[Moi77, §8]. A triangulation of S is a homeomorphism f : K → S, whose source K is a topological
space consisting of (finitely many) copies of the 2-dimensional simplex

∆2 := {x ∈ R3 : x1, x2, x3 ≥ 0, x1 + x2 + x3 = 1}
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which are glued one to the other along edges by affine isomorphisms. We call triangles the images of
those simplices by f and, in the interior of each of these triangles, we color a smaller triangle:

We pick one of these colored triangles, and we merge it to an adjacent colored triangle of our choice.
We repeat this process at much as possible, doing some choices at each step:

At the end of the process, we get a colored “polygonal” region in S which almost fills S. This shows
that the surface S can be obtained from a polygon P ⊂ R2 by identifying its edges pairwisely: let

π : P −→ S = P/∼

be the corresponding projection. It can happen that the integer

nP := ] π ({vertices of P})

is greater than one. In this case, there is an edge e of P whose two vertices are not identified by ∼:
so, the same happens for the “twin” edge e. By collapsing e and simultaneously e to their midpoints,
we see that nP can be decreased by one. Hence we can assume that nP = 1: let ? ∈ S be the common
image of all the vertices of P . There is a small closed disk D ⊂ S such that ? ∈ int(D) and π−1(D)
consists of disjoint neighborhoods of the vertices of P :

a

b a

b

c

dc

d

P

The surface

H :=
(
P \ π−1 int(D)

)
/ ∼

can now be regarded as a disk with “handles” (one “handle” for each pair of twin edges in P ):

H

a

b a

b

c

dc

d

Thus the surface S is obtained by gluing a closed disk to H along its boundary. We pick one of the
handle of H – which we call a1. Because H has just one boundary component, there must be at least
one other handle – which we call b1 – whose attaching intervals “alternate” with those of a1. Next,
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if another handle has an attaching interval “under” a1 ∪ b1, we can always “slide” it far away from
a1 ∪ b1. Doing this repeatedly, we see that S is obtained from a surface of the type

Ng :=

a1 b1 ag bg

(for some integer g ≥ 0) by gluing a disk along its unique boundary component. Therefore S ∼= Σg
since Σg is also obtained from Ng by gluing a disk along its boundary:

The existence in the general case is deduced from the closed case as follows. Assume that S has
b boundary components δ1, . . . , δb. Let S+ be the surface obtained from S by gluing a closed disk
Di along each boundary component δi. Then S+ is closed so that S+ ∼= Σg for some g ≥ 0. For all
i = 1, . . . , b, let D′i be the image of Di under this homeomorphism. Then

S = S+ \ int(D1 ∪ · · · ∪Db) ∼= Σg \ int(D′1 ∪ · · · ∪D′b) = Σg,b. �

A smooth structure on a surface Σ is an atlas which is equivalent to the given one and such that
any coordinate change (1.1) is a C∞-diffeomorphism. We accept the following result: see [Hat13] for a
proof.

Theorem 1.5. Any surface has a smooth structure, which is unique up to diffeomorphism.

Thus, in 2-dimensional topology, one is allowed to freely use the tools of differential topology [Hir76].
For instance, we can define the orientability of a surface Σ by requiring that the Jacobian determinant
of any coordinate change (1.1) should be positive.

1.2. Curves. Let Σ be a surface. Here is our definition of a “curve” in Σ.

Definition 1.6. A closed curve in a surface Σ is a continuous map α : S1 → Σ. It is simple if α
is injective.

In fact, a “closed curve” α : S1 → Σ will sometimes only refer to the image α(S1). If we need also
to record the image by α of the trigonometric orientation of S1, then the closed curve is said to be
oriented. The same closed curve as α with opposite orientation is denoted by α.

Lemma 1.7. Any simple closed curved α in the interior of Σ has a closed neighborhood N(α) such
that the pair (N(α), α) is homeomorphic to the pair (S1 × [−1, 1], S1 × {0}).

Proof. Assuming that Σ and α are smooth, this is the simplest manifestation of the existence theorem
of tubular neighborhoods for submanifolds [Hir76]. The “triviality” of the tubular neighborhood in this
situation is due to the facts that α and Σ are orientable and that GL+(1) = (0,+∞) is contractible. �

Two closed curves α and β are homotopic if there is a continuous map h : S1 × [0, 1]→ Σ (called a
homotopy) such that h(−, 0) = α and h(−, 1) = β. A closed curve is essential if it is not homotopic to
the constant curve or to a boundary component.

Two simple closed curves α and β are isotopic if there is a continuous map h : S1× [0, 1]→ Σ (called
an isotopy) such that h(−, 0) = α , h(−, 1) = β and h(−, t) is simple for every t.

The above definitions can also be formulated in the smooth category if a smooth structure is specified
on Σ. It turns out that two smooth simple closed curves are smoothly isotopic if and only if they are
isotopic. Furthermore, we will accept the following classical result of Baer [Bae27] (see [Eps66] for a
more modern treatment).

Theorem 1.8 (Baer 1927). Two essential simple closed curves in Σ are isotopic if and only if they
are homotopic.
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This is not true anymore if the assumption “essential” is removed. Indeed consider the disk D2 with
its usual orientation. The curve ∂D2 (with the orientation inherited from D2) and the curve −∂D2

(with the opposite orientation) are both homotopic to the constant curve at 0 ∈ D2. But it can be
shown that they are not isotopic.1

We shall now see two different notions of “intersection invariant” for closed curves in Σ. The first
notion is homological and needs the curves to be oriented.

Definition 1.9. Assume that Σ is oriented. Then the (homology) intersection form on Σ is the
bilinear map

ω : H1(Σ;Z)×H1(Σ;Z) −→ Z, (a, b) 7−→ 〈Dj∗(a), b〉
where j∗ : H1(Σ;Z) → H1(Σ, ∂Σ;Z) is induced by the inclusion j : Σ → (Σ, ∂Σ), D : H1(Σ, ∂Σ;Z) →
H1(Σ;Z) is the Poincaré duality, and 〈−,−〉 denotes the Kronecker evaluation.

When a = [α] ∈ H1(Σ;Z) and b = [β] ∈ H1(Σ;Z) are represented by some oriented closed curves α
and β, we have the following formula for ω(a, b). Working in the smooth category, we assume that α
and β are transversal in the sense that

∀x ∈ α ∩ β, TxΣ =
〈
~αx, ~βx

〉
and that α, β only meet at double intersection points; then

ω([α], [β]) =
∑

x∈α∩β

{
+1, if (~αx, ~βx) is direct
−1, otherwise

}
.

(A student who is not familiar with Poincaré duality may accept the above formula as a definition of
the form ω.) In particular, it follows that ω is skew-symmetric.

The second notion of “intersection invariant” is homotopic and does not need the curves to be
oriented.

Definition 1.10. Let a, b be homotopy classes of closed curves in Σ. The (geometric) intersection
number of a, b is

i(a, b) = min
{
](α ∩ β) |α ∈ a, β ∈ b

}
∈ Z≥0.

Two closed curves α, β in Σ are in minimal position if ](α ∩ β) = i([α], [β]).

The following is very useful to display two simple closed curves in minimal position.

Lemma 1.11. Two smooth simple closed curves, which are transversal, are in minimal position if and

only if they do not show any bigon .

Proof. See [FM12, Proposition 1.7]. �

To conclude this section, we shall now see that there are only finitely many “types” of simple closed
curves in the surface Σ. Here two simple closed curves α and β in Σ are said to have the same topological
type if there is a self-homeomorphism of Σ carrying α into β.

Lemma 1.12. Two simple closed curves α and β have the same topological type if, and only if,

Σ \ intN(α) ∼= Σ \ intN(β).

Proof. Assume that α and β have the same topological type. Then there is a homeomorphism f : Σ→ Σ
such that f(α) = β. We can assume that f(N(α)) = N(β), hence f restricts to a homeomorphism
Σ \ intN(α)→ Σ \ intN(β).

Assume that there is a homeomorphism h : Σ \ intN(α)→ Σ \ intN(β). According to Exercice 1.8,
we can also assume that h carries the components of N(α) to the components of N(β). Hence, by

using the identifications N(α) ∼= S1× [−1, 1] ∼= N(β), we can extend h to a homeomorphism h̃ : Σ→ Σ
such that h(α) = β. �

Proposition 1.13. There are only finitely many topological types of simple closed curves in Σ.

This proposition remains valid if we require orientation-preserving self-homeomorphisms of Σ in the
definition of the topological type of a simple closed curve.

1 Hint: work in the smooth category, and use the fact that GL(2) is disconnected.
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Proof. Let α be an arbitrary simple closed curve in Σ, and consider the possibly disconnected surface
Σα := Σ \ intN(α). According to Lemma 1.12, it suffices to show that there are only finitely many
possibilities for the homeomorphism type of Σα.

Assume that Σα is not connected: then Σα has two connected components S1 and S2. Let gi ≥ 0
be the genus of Si and let bi ≥ 1 be the number of boundary components of Si. Then

b1 + b2 = ] (boundary component of Σ) + 2

which shows that there only finitely many possibilities for b1, b2. Next, we have

χ(Σ) = χ(Σα) + χ(N(α))− χ(∂N(α))

= χ(Σα) + χ(S1 × [0, 1])− χ(S1 t S1) = χ(Σα)− χ(S1) = χ(Σα).

By Exercice 1.3, we also have

χ(Σα) = χ(S1) + χ(S2) = (2− 2g1 − b1) + (2− 2g2 − b2).

We deduce that 2g1+2g2 = 4−χ(Σ)−b1−b2, which shows that there are only finitely many possibilities
for g1, g2. The case where Σα is connected can be treated with the same kind of arguments. �

In addition to curves, we will also need “arcs” in the sequel. Assume that ∂Σ 6= ∅. A proper arc
in Σ is a continuous map ρ : [0, 1] → Σ such that ρ−1(∂Σ) = {0, 1}. It is simple if ρ is injective. The
notions of homotopy of arcs and isotopy of simple proper arcs are defined as we did for curves, by
requiring endpoints of arcs to be fixed at any time.

1.3. Exercices.

Exercise 1.1. Let g ≥ 0 and b ≥ 1 be integers. Show that Σg,b deformation retracts to a wedge of
2g + b− 1 circles. Deduce that

H0(Σg,b;Z) ' Z, H1(Σg,b;Z) ' Z2g+b−1, Hi(Σg,b;Z) = 0 for i ≥ 2.

Exercise 1.2. Let g ≥ 0 be an integer. Using Exercise 1.1, show that

H0(Σg;Z) ' Z, H1(Σg;Z) ' Z2g, H2(Σg;Z) ' Z, Hi(Σg;Z) = 0 for i ≥ 3.

Exercise 1.3. Compute the Euler characteristic χ(Σg,b) for any g, b ≥ 0. Is the Euler characteristic a
complete invariant of (compact, connected, orientable) surfaces?

Exercise 1.4. Compute the fundamental group π1(Σg,b) for any g, b ≥ 0. Is the fundamental group a
complete invariant of (compact, connected, orientable) surfaces?

Exercise 1.5. Deduce from the classification of surfaces the Jordan–Schoenflies theorem: for any
simple closed curve α ⊂ S2, the complement S2 \ α consists of two connected components whose
closures in S2 are closed disks.

Exercise 1.6. Show that the intersection form ω of Σg,b is non-singular if and only if b ∈ {0, 1}.

Exercise 1.7. Which (compact, connected, orientable) surfaces can be embedded in the plane R2?

Exercise 1.8. Let Σ be a surface with a least two boundary components δ and δ′, and let T be a con-
nected subsurface of Σ such that δ ∪ δ′ ⊂ T . Construct an orientation-preserving self-homeomorphism
of Σ which exchanges δ with δ′ and is the identity outside T .

Exercise 1.9. A simple closed curve α in the interior of a surface Σ is non-separating if the space Σ\α is
connected. Show that any two non-separating simple closed curves in Σ have the same topological type.

Exercise 1.10. List all the topological types of simple closed curves on the surface Σg,1.

* * *

Solution to Exercise 1.1. It is enough to draw such a wedge of circles Γg,b on a picture of Σg,b. Since
the homology is a homotopy invariant, we have H∗(Σg,b;Z) ' H∗(Γg,b;Z) and we easily conclude.

Solution to Exercise 1.2. We have Σg ∼= Σg,1∪D2 where Σg,1 and D2 are glued along their boundary.
It follows from the Mayer–Vietoris theorem (in reduced homology with Z coefficients) that we have a
long exact sequence

H2(Σg,1)⊕H2(D2) −→ H2(Σg)
∂∗−→ H1(S1) −→ H1(Σg,1)⊕H1(D2) −→ H1(Σg) −→ H̃0(S1),

which simplifies to

0 −→ H2(Σg)
∂∗−→ H1(S1) −→ H1(Σg,1) −→ H1(Σg) −→ 0.
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The map H1(S1)→ H1(Σg,1) is obviously trivial, and we deduce that

H2(Σg) ' H1(S1) ' Z, H1(Σg) ' H1(Σg,1) ' Z2g.

We also have H0(Σg) ' Z since Σg is connected, and we have Hi(Σg) = 0 for i ≥ 3 since Σg has a
cellular decomposition with only cells of dimension ≤ 2.

Solution to Exercise 1.3. For b > 0, we have by Exercise 1.1

χ(Σg,b) = 1− (2g + b− 1) = 2− 2g − b

and, for b = 0, we have by Exercise 1.2

χ(Σg) = 1− 2g + 1 = 2− 2g.

Hence χ(Σg,b) = 2−2g−b for any g, b ≥ 0. In particular, χ(Σ1,1) = −1 = χ(Σ0,3) although Σ1,1 6∼= Σ0,3.

Solution to Exercise 1.4. For b > 0, Σg,b deformation retracts to a wedge of circles α1, β1, . . . , αg, βg,
ζ1, . . . , ζb−1 based at a point ? ∈ ∂Σg,b. Hence

π1(Σg,b, ?) = F (α1, β1, . . . , αg, βg, ζ1, . . . , ζb−1) , the free group on 2g + b− 1 generators.

For b = 0, we have Σg ∼= Σg,1 ∪D2. Hence, by applying the Van Kampen theorem, we get for g ≥ 1

π1(Σg,b, ?) =
〈
α1, β1, . . . , αg, βg | [β−1

1 , α1] · · · [β−1
g , αg]

〉
where α1, β1, . . . , αg, βg are appropriately oriented; for g = 0, we get π1(Σ0) = {1}. In particular, note
that π1(Σ0) ' π1(Σ0,1) although Σ0 6∼= Σ0,1.

Solution to Exercise 1.5. It is enough to show that Sα := S2 \ intN(α) is the disjoint union of two
closed disks.

Assume that Sα is connected. Then the two endpoints of the interval {(1, 0)}×[−1, 1] ⊂ S1×[−1, 1] ∼=
N(α) can be connected by a path in Sα: thus we obtain a closed curved β ⊂ S2 which we orient in an
arbitrary way. Since α and β meet in exactly one point, we have ω([α], [β]) = ±1 which contradicts the
fact that H1(S2;Z) is trivial. Therefore Sα has two connected components, which we call S1 and S2.

Since S2 is closed, we must have Si ∼= Σgi,1 for some integer gi ≥ 0. Hence

2 = χ(S2) = χ(Sα) = χ(S1) + χ(S2) = (1− 2g1) + (1− 2g2) = 2− 2(g1 + g2)

which implies that g1 = g2 = 0. Hence S1
∼= S2

∼= Σ0,1, and we have Σ0,1
∼= D2 since S2 = Σ0 is

obtained by gluing two disks along their boundaries.

Solution to Exercise 1.6. Assume that b ∈ {0, 1} and consider the following system of oriented
simple closed curves on Σg,b:

α1 αg
β1 βg· · ·

	

Set ai := [αi] ∈ H1(Σ;Z) and bi := [βi] ∈ H1(Σ;Z) for all i ∈ {1, . . . , g}. Then the matrix of ω in the
basis (a, b) := (a1, . . . , ag, b1, . . . , bg) is

Ω :=

(
0 Ig
−Ig 0

)
.

Since we have det Ω = 1, the form ω is non-singular. Thus ω is a symplectic form and (a, b) is a
symplectic basis of ω.

Assume that b > 1. Choose (b−1) boundary components among the b available, and let z1, . . . , zb−1 ∈
H1(Σg,b;Z) be their homology classes. Then zi 6= 0 and ω(−, zi) = 0 since any element of H1(Σg,b;Z)
can be represented by an oriented closed curve disjoint from the i-th boundary component. Hence the
radical of ω is not trivial.

N.B. The matrix of ω in the basis (a, b, z) := (a1, . . . , ag, b1, . . . , bg, z1, . . . , zb−1) of H1(Σg,b;Z) is 0 Ig 0
−Ig 0 0

0 0 0

 .
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Solution to Exercise 1.7. Let i : Σ ↪→ R2 be an embedding of a surface. Since Σ is compact, we can
find a closed disk D ⊂ R2 which contains i(Σ). We have the following commutative diagram:

H1(Σ;Z)×H1(Σ;Z)
ωΣ //

i∗×i∗
��

Z

H1(D;Z)×H1(D;Z)
ωD
// Z

Since H1(D;Z) = 0, we must have ωΣ = 0. Then, by the previous exercise, the genus of Σ must be
zero. Assume now that Σ is closed, i.e. Σ is homeomorphic to a 2-sphere: we can even assume that
Σ = S2. Fix a point x ∈ S2 and let p : R2 → S2 be a continuous map which is a homeomorphism onto
S2 \ {x}. Then f := p ◦ i : S2 → S2 is an embedding whose image does not contain x. We denote
by H± the two hemispheres of S2 and let E := H+ ∩H− be the equator. By Exercise 1.5, the simple
closed curve f(E) separates S2 into two closed disks: one of them, called D1, contains x in its interior
while the other one, called D2, does not. The map f sends int(H+) t int(H−) into D1 t D2 so, for
connectedness reasons, either int(H+) is mapped into D1 and int(H−) into D2, or vice-versa. Assume,
for instance, the first possibility: then f is an embedding of H+ into D1 \ {x} which sends the curve
∂H+ = E to the curve ∂D1 = f(E). The former is null-homotopic in H+ while the latter generates
H1(D1 \ {x};Z) ' Z ... contradiction. We conclude that Σ ∼= Σ0,b for some b > 0.

Conversely, a disk “with holes” Σ0,b (with b > 0) can be embedded in R2 in the obvious way.

Solution to Exercise 1.8. Let α be a proper simple arc in T connecting δ to δ′. There is a closed
neighborhood of α ∪ δ ∪ δ′ which is homeomorphic to Σ0,3. Hence we can assume without loss of
generality that Σ = T ∼= Σ0,3 as shown below:

δ δ′

δ0

and we need to construct a homeomorphism f : Σ → Σ which is the identity on δ0 and exchanges δ
with δ′. To be even more explicit, we can assume that

Σ = D2 \ {z ∈ C : |z − 1/4| < 1/8 or |z + 1/4| < 1/8} ⊂ C.
Let h : D2 → D2 be the homeomorphism defined by

h(z) :=

{
−z if |z| ≤ 1/2
exp

(
2iπ(1− |z|)

)
· z if 1/2 ≤ |z| ≤ 1.

h−→
1/2−1/2

i/2

−i/2

Clearly h exchanges the disk {z : |z − 1/4| < 1/8} with the disk {z : |z + 1/4| < 1/8} and h is the
identity on S1 = ∂D2. Hence f := h|Σ has the desired properties.

Solution to Exercise 1.9. Assume that Σ ∼= Σg,b and let α ⊂ int(Σ) be a non-separating simple
closed curve. Then the surface Σα := Σ \ intN(α) has b+ 2 boundary components; let gα be the genus
of Σα. We have

2− 2gα − (b+ 2) = χ(Σα) = χ(Σ) = 2− 2g − b,
hence gα = g−1. We deduce that Σα ∼= Σg−1,b+2, i.e. the homeomorphism type of Σα does not depend
on the choice of α.
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Solution to Exercise 1.10. Let α be an arbitrary simple closed curve on Σg,1. According to Exer-
cise 1.9, there is only one possible topological type if we assume that α is non-separating:

α

· · ·

Assume that α is separating: let S be the subsurface delimited by α containing ∂Σg,1 and let T be the
other subsurface. We have S ∼= Σh,2 and T ∼= Σk,1 for some h, k ≥ 0. Moreover,

1− 2g = χ(Σg,1) = χ(S) + χ(T ) = (−2h) + (1− 2k) = 1− 2(h+ k)

so that g = h+ k. Therefore, in the separating case, there are g possibilities of topological types:

α
· · ·

(h, k) = (0, g)

, · · · , α
· · ·

(h, k) = (g − 1, 1)

,

α

· · ·

(h, k) = (g, 0)
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2. Mapping class groups

We can now turn to the main subject of these lectures, namely the mapping class groups of surfaces.
Our exposition is inspired from the books [Bir74], [FM12] and the survey article [Iva02]; it mainly
follows the informal notes [Mas09] with some additions and corrections.

2.1. Definitions of mapping class groups. Let Σ be a (compact, orientable, connected) surface,
and fix an orientation on Σ. We will consider the following group:

Homeo+,∂(Σ) :=
{

homeomorphisms Σ→ Σ which are orientation-preserving and fix ∂Σ
}

Recall that, for any two topological spaces X and Y , two continuous maps a, b : X → Y are
homotopic if there is a continuous map H : X× [0, 1]→ Y (called an homotopy) such that H(−, 0) = a
and H(−, 1) = b. Two homeomorphisms a, b : Σ → Σ are isotopic if there is an homotopy H : Σ ×
[0, 1]→ Σ (called an isotopy) such that H(−, t) is a homeomorphism for every t. Two homeomorphisms
a, b : Σ→ Σ which fix ∂Σ are isotopic rel ∂Σ if they are related by an isotopy H : Σ× [0, 1]→ Σ such
that H(−, t) fixes ∂Σ for every t.

Definition 2.1. The mapping class group of Σ is M(Σ) := Homeo+,∂(Σ)/(isotopy rel ∂Σ).

Other common notations for the mapping class group include the following ones: MCG(Σ), Mod(Σ)

and Mg,b, Γg,b if Σ is one of the “standard” surfaces Σg,b. The isotopy class of an f ∈ Homeo+,∂(Σ)
is denoted by [f ] ∈M(Σ), or simply by f ∈M(Σ).

Remark 2.2. Equip the set Homeo+,∂(Σ) with the compact-open topology, i.e. the topology generated
by the family of subsets {V (K,U)}K,U indexed by compact subsets K ⊂ Σ and open subsets U ⊂ Σ
and defined by

V (K,U) :=
{
f ∈ Homeo+,∂(Σ) : f(K) ⊂ U

}
.

(See [Bre93] for an exposition of this kind of topology.) Then a continuous map ρ : [0, 1]→ Homeo+,∂(Σ)
is the same thing as an isotopy rel ∂Σ between ρ(0) and ρ(1). (Observe in particular that, during an
isotopy, an orientation-preserving homeomorphism remains orientation-preserving.) Therefore, M(Σ)

can also be defined as the set of path-connected components of Homeo+,∂(Σ). �

The above definition of a mapping class group has several variations. Here are two variations which
give equivalent definitions:

� We could fix a smooth structure on Σ and we could replace homeomorphisms up to isotopy
by diffeomorphisms up to smooth isotopy, but this would not affect the definition ofM(Σ). In
other words, any homeomorphism is isotopic to a diffeomorphism (this generalizes Theorem 1.5,
see [Hat02]) and any two isotopic diffeomorphisms are smoothly isotopic.
� We could consider homeomorphisms up to homotopy rel ∂Σ instead of considering them up to

isotopy rel ∂Σ. This would not affect the definition of M(Σ) since Baer used Theorem 1.8 to
also show the following: two orientation-preserving homeomorphisms Σ→ Σ are homotopic rel
∂Σ if and only if they are isotopic rel ∂Σ (see [Bae28, Eps66]).

Here are two other variations which give non-equivalent definitions of the mapping class group:

� We could allow homeomorphisms not to be the identity on the boundary. Then, generally
speaking, the resulting groupMð(Σ) differs from the above groupM(Σ): specifically, we have
an exact sequence of groups

Zb −→M(Σ) −→Mð(Σ) −→ Sb −→ 1,

see Exercise 2.10.
� We could allow homeomorphisms not to preserve the orientation: we denote by M±(Σ) the

resulting group. If the boundary of Σ is non-empty, then any boundary-fixing homeomorphism
must preserve the orientation: M±(Σ) = M(Σ). If the boundary is empty, then we have a
short exact sequence of groups

1 −→M(Σ) −→M±(Σ) −→ Z2 −→ 1,

see Exercise 2.11.

2.2. First examples of mapping class groups. We now give two examples of mapping class groups.
First, let us prove that the mapping class group of the disk D2 is trivial. Recall that a topological
space X deformation retracts to a subspace R ⊂ X if there exists a continuous map r : X → R (called
the retraction) such that r|R = idR and the map X → X defined by x 7→ r(x) is homotopic to idX ; if
R is a singleton in X, then X is said to be contractible.
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Proposition 2.3 (Alexander’s trick). The space Homeo∂(D2) = Homeo+,∂(D2) is contractible. In
particular, we have M(D2) = {1}.

Proof. For any homeomorphism f : D2 → D2 which is the identity on the boundary, and for all
t ∈ [0, 1], we define a homeomorphism ft : D2 → D2 by

ft(x) :=

{
t · f(x/t) if 0 ≤ |x| ≤ t,
x if t ≤ |x| ≤ 1.

Here D2 is seen as a subset of C and |x| denotes the modulus of x ∈ C. Then, the map

H : Homeo∂(D2)× [0, 1] −→ Homeo∂(D2), (f, t) 7−→ ft

is a homotopy between the retraction of Homeo∂(D2) to {idD2} and the identity of Homeo∂(D2). Thus,

Homeo∂(D2) deformation retracts to {idD2}. �

We now compute the mapping class group of the torus S1 × S1, which is not trivial.

Proposition 2.4. Let (a, b) be the basis of H1(S1 × S1;Z) defined by a := [S1 × 1] and b := [1× S1].
Then, the map

κ :M(S1 × S1) −→ SL(2;Z)

which sends any isotopy class [f ] to the matrix of f∗ : H1(S1 × S1;Z) → H1(S1 × S1;Z) with respect
to the basis (a, b), is a group isomorphism.

Proof. The fact that we have a group homomorphism κ : M(S1 × S1) → GL(2;Z) follows from the
functoriality of the homology. We now check that κ([f ]) ∈ SL(2;Z) for any [f ] ∈M(S1 × S1): set

κ([f ]) =

(
f11 f12

f21 f22

)
where the integers fij ’s are such that f∗(a) = f11a + f21b and f∗(b) = f12a + f22b. Since f preserves
the orientation, it also leaves invariant the intersection form ω. So, we have

1 = ω(a, b) = ω
(
f∗(a), f∗(b)

)
= ω

(
f11a+ f21b, f12a+ f22b

)
= f11f22 − f21f12 = detκ([f ]).

The surjectivity of κ can be proved as follows. We identify R2/Z2 to S1×S1 via the homeomorphism
defined by (u, v) 7→ (e2iπu, e2iπv) for any (u, v) ∈ R2. Any matrix T ∈ SL(2;Z) defines a linear
isomorphism

R2 −→ R2,

(
u
v

)
7−→ T ·

(
u
v

)
which leaves Z2 globally invariant and so induces an (orientation-preserving) homeomorphism t :
R2/Z2 → R2/Z2. It is easily checked that κ([t]) = T .

To prove the injectivity, let us consider a homeomorphism f : S1×S1 → S1×S1 such that κ([f ]) is
trivial. Since π1(S1 × S1) is abelian, the Hurewicz theorem implies that f acts trivially at the level of
the fundamental group. The canonical projection R2 → R2/Z2 gives the universal covering of S1×S1.

Thus, f can be lifted to a unique homeomorphism f̃ : R2 → R2 such that f̃(0, 0) = (0, 0) and, by

assumption on f , the homeomorphism f̃ is Z2-equivariant. Therefore, the “affine” homotopy

H : R2 × [0, 1] −→ R2, (x, t) 7−→ t · f̃(x) + (1− t) · x

between idR2 and f̃ , descends to a homotopy from idS1×S1 to f . Since homotopy coincides with isotopy
in dimension two, we deduce that [f ] = 1 ∈M(S1 × S1). �

2.3. Generation of mapping class groups. Let Σ be an oriented surface. We now introduce some
generators for the mapping class group M(Σ).

Definition 2.5. Let α be a simple closed curve in the interior of Σ. We identify a tubular neighborhood
N(α) of α with S1 × [0, 1], in such a way that orientations are preserved. Then, the Dehn twist along
α is the homeomorphism τα : Σ→ Σ defined by

τα(x) =

{
x if x /∈ N(α)(
e2iπ(θ+r), r

)
if x =

(
e2iπθ, r

)
∈ N(α) = S1 × [0, 1].

Because of the choice of N(α) and its “parametrization” by S1 × [0, 1], the homeomorphism τα is only
defined up to isotopy. Besides, the isotopy class of τα only depends on the isotopy class of the curve α.
Here is the effect of τα on a curve ρ which crosses transversely α in a single point:
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α

ρ

N(α)

τα−→

Remark 2.6. B The definition of τα does not need the curve α to be oriented, but it requires an
orientation on the surface Σ. Since the surface Σ is oriented, there is a notion of “right-hand side”
and “left-hand side” on Σ: observe that, in the above picture, the image of the arc ρ by τα makes a
right-hand turn. Thus our definition of a Dehn twist is the same as in [Bir74], but it is opposite to the
definition used in [Iva02] or [FM12] where Dehn twists are “left-handed”. �

It can be checked that τα = 1 ∈ M(Σ) if α bounds a disk (see Exercise 2.4). Otherwise, τα 6= 1 as
we now show.

Proposition 2.7. Let α be a simple closed curve in Σ such that [α] 6= 1 ∈ π1(Σ). Then τα has infinite
order in M(Σ).

Proof. Assume that α is isotopic to a boundary curve δ. If Σ is an annulus, then we know from
Exercise 2.2 thatM(Σ) ' Z generated by τα. If Σ is not an annulus, then the curve α regarded in the
“double” surface

Σ′ := Σ ∪
δ=δ

(−Σ)

is not anymore isotopic to a boundary curve; furthermore, the inclusion Σ ↪→ Σ′ induces a group
homomorphismM(Σ)→M(Σ′); so the fact that τα has infinite order inM(Σ′) will imply that τα has
infinite order in M(Σ). Therefore we can assume in the sequel that α is not isotopic to a boundary
curve, i.e. α is “essential” in the terminology of §1.2.

Let now β be an arbitrary simple closed curve in Σ. The following can be deduced from Lemma 1.11
(see [FM12, Proposition 3.2]):

Fact. For any k ∈ Z, we have i
(
[τkα(β)], [β]

)
= |k| · i([α], [β])2.

Hence it is enough to justify that there exists a β such that i([α], [β]) > 0. Clearly this possibility for
α only depends on its topological type. If α is non-separating, then we can choose β as follows:

α

β

· · ·· · ·

· · · · · · · · ·

and Lemma 1.11 implies that i([α], [β]) = 1. If α is separating, then each of the subsurfaces S1 and S2

delimited by α is not a disk nor an annulus. Therefore we can find a proper simple arc βi ⊂ Si such
that we have the following situation:

α βi

not a disk

not a disk
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If follows from Lemma 1.11 that β := β1 ∪ β2 is a simple closed curve satisfying i([α], [β]) = 2. �

Here is now a fundamental result about mapping class groups, which dates back to Dehn [Deh38].

Theorem 2.8 (Dehn 1938). The group M(Σ) is generated by Dehn twists along simple closed curves
which are non-separating or which encircle some boundary components.

In order to prove this, we will need the following result which describes how the mapping class group
“grows” when one removes a disk from the surface [Bir69a].

Proposition 2.9 (Birman’s exact sequence). Let Σ◦ be the surface obtained from Σ by removing a
disk D. Then, there is an exact sequence of groups

π1 (U(Σ))
Push //M(Σ◦)

∪ idD ////M(Σ) // 1

where U(Σ) denotes the total space of the unit tangent bundle2 of Σ. Moreover, the image of the
“Push” map is generated by some products of Dehn twists (and their inverses) along curves which are
non-separating or which encircle boundary components.

Sketch of the proof. The argument below needs the notion of “fibration” which we have recalled in
Appendix A. Let Diffeo+,∂(Σ) be the group of orientation-preserving and boundary-fixing diffeomor-

phisms Σ→ Σ. We equip Diffeo+,∂(Σ) with the compact-open topology. As we mentioned in §2.1, we
have

M(Σ) = π0

(
Homeo+,∂(Σ)

)
= π0

(
Diffeo+,∂(Σ)

)
so that we can work in the smooth category. Let Emb+(D,Σ) be the space of orientation-preserving
smooth embeddings of the disk D into Σ, and denote by ι ∈ Emb+(D,Σ) the inclusion D ↪→ Σ. The

restriction map Diffeo+,∂(Σ)→ Emb+(D,Σ), f 7→ f |D is a fibration whose fiber over ι is Diffeo+,∂(Σ◦)
(see [Iva02, Theorem 2.6.A], and below). The long exact sequence in homotopy induced by this fibration
terminates with

π1

(
Diffeo+,∂(Σ), idΣ

)
−→ π1

(
Emb+(D,Σ), ι

) P−→M(Σ◦) −→M(Σ) −→ 1,

since any orientation-preserving embedding of D into Σ is isotopic to ι (i.e. Emb+(D,Σ) has a single
path-connected component). The above map P has the following definition. A loop in Emb+(D,Σ)
based at ι is an isotopy I : D × [0, 1] → Σ such that I(−, 0) = I(−, 1) = ι. By the “isotopy extension

theorem” (see [Hir76], for instance), there is an isotopy Ĩ : Σ× [0, 1] → Σ starting with Ĩ(−, 0) = idΣ

and such that Ĩ|D×[0,1] = I. Then, [I] ∈ π1

(
Emb+(D,Σ), ι

)
is mapped by P to[

restriction of Ĩ(−, 1) to Σ◦ = Σ \ int(D)
]
.

We now give a more concrete description of the map P . For this, let v be a unit tangent vector
of D: v ∈ TxΣ with ‖v‖ = 1 and x ∈ int(D). The map Emb+(D,Σ) → U(Σ) defined by f 7→
(dxf)(v)/‖(dxf)(v)‖ is a weak homotopy equivalence (see [Iva02, Theorem 2.6.D]). In particular, it
induces an isomorphism

π1

(
Emb+(D,Σ), ι

)
' π1(U(Σ), v).

We denote by “Push” : π1(U(Σ), v) → M(Σ◦) the composition of the homomorphism P with this
isomorphism. If ~α is the unit tangent vector field of a smooth simple closed curve α based at x, then
Push([~α]) ∈ M(Σ◦) can be described as follows. Let N(α) be a tubular neighborhood of α and let
α−, α+ be the two boundary components of N(α): here we assume that the orientation induced by
N(α) on α+ (respectively, α−) is the given orientation (respectively, the opposite orientation) on α.
Then we have the following formula:

(2.1) Push([~α]) = τ−1
α−τα+ .

This is proved by checking that Push([~α]) and τ−1
α−τα+ (viewed as elements of M(N(α) \ int(D))) act

in the same way on the proper arcs ρ1 and ρ2 shown below, and by appealing to Exercise 2.3:

2Here, the surface Σ is endowed with an arbitrary smooth structure and a riemannian metric.
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D

~α

α−

α+

ρ2

ρ1

Push([~α])
//

Note that the way how Push([~α]) acts on the arc ρ2 explains the terminology “Push”. Next, from the
exact sequence of groups

π1(S1, 1) −→ π1 (U(Σ), v) −→ π1(Σ, x) −→ 1

(deduced from the long exact sequence in homotopy for the fibration U(Σ) → Σ), we see that
π1 (U(Σ), v) is generated by the fiber and by unit tangent vector fields of smooth simple closed curves
which are non-separating or which are isotopic to components of ∂Σ. Since the image of the fiber S1 by
the Push map is τ∂D, we conclude from (2.1) that Push (π1 (U(Σ), v)) is generated by some products
of Dehn twists (and their inverses) along curves which are non-separating or which encircle boundary
components. �

Remark 2.10. It is known that the path-connected components of the space Diffeo+,∂(Σ) are con-
tractible when3 χ(Σ) < 0 [EE69, ES70, Gra73]. So, in this case, the above proof produces a short exact
sequence of groups

1 // π1 (U(Σ))
Push //M(Σ◦)

∪ idD //M(Σ) // 1. �

We can now proceed to the proof of Dehn’s theorem.

Proof of Theorem 2.8. Here we mainly follow the arguments of Ivanov [Iva02, Theorem 4.2.C]. Let g
be the genus of Σ and let b be the number of boundary components of Σ. First of all, we deduce
from Proposition 2.9 that, if the statement holds at a given g for b = 0, then it holds for any b ≥ 0.
So, we can assume that Σ is closed and the proof then goes by induction on g ≥ 0. For g = 0,
Exercise 2.1 tells us that there is nothing to prove. The case g = 1 is proved using the isomorphism
κ :M(S1 × S1)→ SL(2;Z) introduced in Proposition 2.4. It is well-known that the group SL(2;Z) is
generated by

A :=

(
1 1
0 1

)
and T :=

(
0 1
−1 0

)
(see [New72, Theorem VII.3]). Hence SL(2;Z) is also generated by

A and B :=

(
1 0
−1 1

)
since we have ABA = T . The matrices A and B correspond via κ to the Dehn twists along the simple
closed curves α := S1 × {1} and β := {1} × S1 of S1 × S1. We deduce that the group M(S1 × S1) is
generated by τα and τβ . Thus, in the sequel, we are allowed to assume that the genus g is at least 2.

Let f ∈M(Σ) and let α be a non-separating simple closed curve on Σ. Then, f(α) is another non-
separating simple closed curve on Σ. We need the following non-trivial fact due to Lickorish [Lic64]:
see [FM12, §4.1.2] or [Iva02, §3.2] for proofs.

Fact. (Connectedness of the complex of curves) Assume that g ≥ 2. Then, for any two non-separating
simple closed curves ρ and ρ′, there exists a sequence of non-separating simple closed curves

ρ = ρ1  ρ2  · · · ρr = ρ′

such that i(ρj , ρj+1) = 0 for all j = 1, . . . , r − 1.

We also need the following observation.

3 This is not true if χ(Σ) ≥ 0. For instance, we have the following results in the closed case: Diffeo+(S2) deformation

retracts to SO(3) by [Sma59], while each of the path-connected components of Diffeo+(S1 × S1) deformations retracts
to S1 × S1 by [EE69].
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Fact. If β and γ are two non-separating simple closed curves on Σ such that i(β, γ) = 0, then there is
a product of Dehn twists T along non-separating simple closed curves such that T (β) = γ.

Indeed, we can find a third non-separating simple closed curve δ ⊂ Σ such that i(δ, γ) = i(δ, β) = 1.
Then, by Exercise 2.7, we have τδτγ τβτδ(β) = τδτγ(δ) = γ and we can take T := τδτγτβτδ.

The above two facts show that we can find a product of Dehn twists T along non-separating simple
closed curves such that T (α) = f(α). Therefore, we are allowed to assume that f preserves α. But, it
may happen that f inverses the orientations of α. In this case, we can consider a non-separating simple
closed curve β such that i(α, β) = 1 and deduce from Exercise 2.7 that τβτ

2
ατβ preserves α but inverses

its orientations. Therefore, after possible multiplication by τβτ
2
ατβ , we can assume that f preserves α

with orientation. Since there is only one orientation-preserving homeomorphism of S1 up to isotopy,
we can assume that f is the identity on α. Furthermore, we can suppose that f is the identity on a
tubular neighborhood N(α) of α.

Let Σ′ := Σ \ intN(α) and let f ′ be the restriction of f to Σ′. The surface Σ′ has genus g′ := g − 1
and has 2 boundary components:

α

N(α)

β

δ

So, by the induction hypothesis, f ′ ∈M(Σ′) is a product of Dehn twists along simple closed curves in
Σ′ which are non-separating or which encircle some boundary components. We can conclude the same
thing for f ∈ M(Σ): indeed a non-separating simple closed curve in Σ′ is also non-separating in Σ,
and a simple closed curve which encircles some boundary components in Σ′ is either isotopic in Σ to
α (which is non-separating) or is isotopic to the simple closed curve δ shown above. In the latter case,
we use Exercise 2.8 which implies that τδ is a product of six Dehn twists along non-separating simple
closed curves in Σ (namely α and β). �

The above proof can be improved to show that finitely many Dehn twists are enough to generate
the mapping class group, and this was already proved by Dehn in the closed case [Deh38]. Much later,
Lickorish rediscovered Dehn’s result and improved it by reducing the number of generators [Lic64].

Theorem 2.11 (Lickorish 1964). For g ≥ 1, the group M(Σg) is generated by the Dehn twists along
the simple closed curves

(2.2) α1, . . . , αg, β1, . . . , βg, γ1, . . . , γg−1

shown below:

α1

α2 αg−1

αg

β1 β2 βg−1 βgγ1 γg−1

· · ·

Afterwards, Humphries showed that 2g + 1 Dehn twists are enough to generate M(Σg): specifically,
with the above notation, M(Σg) is generated by the Dehn twists along

(2.3) β1, . . . , βg, γ1, . . . , γg−1, α1, α2

see [Hum79]. The Dehn twists along the curves (2.2) are called the Lickorish generators of M(Σg),
while those along the curves (2.3) are called the Humphries generators.

Remark 2.12. Humphries also proved that M(Σg) can not be generated by less than 2g + 1 Dehn
twists [Hum79]. Nonetheless, Wajnryb showed that M(Σg) is generated by only two elements (one is
defined explicitly as a product of 2g Dehn twists, while the other one is a Dehn twist composed with
the inverse of a Dehn twist: see [Waj96]). �
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2.4. Presentations of mapping class groups. Since mapping class groups are generated by Dehn
twists, it is natural to look for presentations in terms of Dehn twists. First of all, one can wonder
which relations exist between only two Dehn twists, and it is intuitively clear that these will depend
on how much the two curves intersect each other.

(Disjointness relation) Let δ and ρ be two simple closed curves on a surface Σ with
i(δ, ρ) = 0. Then [τδ, τρ] = 1.

(Braid relation) Let δ and ρ be two simple closed curves on a surface Σ with i(δ, ρ) = 1.
Then, τδτρτδ = τρτδτρ.

The first relation is obvious. To prove the second one, we use Exercise 2.7 and Exercise 2.5:

τρ = ττδτρ(δ) = τδτρ τδ (τδτρ)
−1.

If i(δ, ρ) ≥ 2, then τδ and τρ generate a free group of rank two: this can be proved using estimates
of the geometric intersection number, see [Ish96] or [FM12, §3.5.2]. Thus, there is no relation at all
between τδ and τρ in this case.

If we now consider more than two simple closed curves, then new relations appear between the
corresponding Dehn twists. For instance, we can consider a chain ρ1, . . . , ρk of simple closed curves,
which means that

i(ρl, ρm) =

{
0 if |l −m| > 1,
1 if |l −m| = 1.

Each chain induces a relation in the mapping class group.

Lemma 2.13 (k-chain relation). Let ρ1, . . . , ρk be a chain of simple closed curves in a surface Σ, and
consider the subsurface

N := N(ρ1) ∪ · · · ∪N(ρk) ⊂ Σ

where N(ρi) is a (sufficiently small) tubular neighborhood of ρi. Then,

� for k even, (τρ1 · · · τρk)2k+2 = τδ where δ := ∂N .
� for k odd, (τρ1 · · · τρk)k+1 = τδ1τδ2 where δ1 ∪ δ2 := ∂N .

The 2-chain relation is proved in Exercise 2.8. The proof of the k-chain relation for higher k is sketched
in [FM12, §9.4.2].

The few relations that we have exhibited so far are enough for a presentation of the mapping class
group of Σ1

∼= S1×S1. Indeed, according to Proposition 2.4, this is equivalent to a presentation of the
group SL(2;Z).

Theorem 2.14. Set A := τα and B := τβ, where α := S1 × {1} and β := {1} × S1 are shown below:

α

β

Then, we have the presentation

(2.4) M(S1 × S1) =
〈
A,B

∣∣ABA = BAB, (AB)6 = 1
〉
.

Note that the first relation is a braid relation, and that the second one follows from the 2-chain relation.

Proof. Let PSL(2;Z) be the quotient of SL(2;Z) by its center, namely the order 2 subgroup generated
by −I2. It is well-known that PSL(2;Z) is a free product Z2 ∗ Z3. More precisely, we have

(2.5) PSL(2;Z) =
〈
T ,U

∣∣ T 2
= 1, U

3
= 1
〉

where T and U are the classes of the following matrices:

T :=

(
0 1
−1 0

)
and U :=

(
0 1
−1 −1

)
.

(See [New72, §VIII.3] for a one-page proof.) Note that T 2 = −I2 and U3 = I2. Hence, using the short
exact sequence of groups

0 −→ {±I2} −→ SL(2;Z) −→ PSL(2;Z) −→ 1,

we deduce from (2.5) the following presentation of SL(2;Z):

SL(2;Z) =
〈
T,U

∣∣ T 4 = 1, U3 = 1, [U, T 2] = 1
〉
.
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(This can be proved, for instance, using Lemma 3.6 below.) Setting

V :=

(
1 1
−1 0

)
,

and observing that U = V −1T 2, we obtain the following equivalent presentation:

SL(2;Z) =
〈
T, V

∣∣ V 6 = 1, T 2 = V 3
〉
.

Finally, setting

A :=

(
1 1
0 1

)
and B :=

(
1 0
−1 1

)
and observing that T = ABA and V = BA, we obtain the presentation

SL(2;Z) =
〈
A,B

∣∣ (BA)6 = 1, (ABA)2 = (BA)3
〉

which is equivalent to (2.4). �

For higher genus, we need more relations and we consider for this the involution h of Σg ⊂ R3 which
is a rotation by 180◦ around an appropriate axis: see below. It can be shown4 that h ∈M(Σg) is given
by the following word in the Lickorish’s generators:

h = τα1
τβ1

τγ1
τβ2
· · · τβg−1

τγg−1
τβgταg · ταgτβgτγg−1

τβg−1
· · · τβ2

τγ1
τβ1

τα1

α1

β1 γ1 β2 βg−1 γg−1 βg

αg

Then, we have the following relations between Lickorish’s generators:

(Hyperelliptic relations) In M(Σg), we have h2 = 1 and [h, τα1
] = 1.

The first one is obvious, while the second one follows from Exercise 2.5 using the fact that h(α1) = α1.
These additional relations allow for a presentation of M(Σ2), which has been obtained in [BH71].

Theorem 2.15 (Birman–Hilden 1971). Set A := τα1 , B := τβ1 , C := τγ , D := τβ2 and E := τα2 ,
where α1, α2, β1, β2, γ are the simple closed curves shown below:

α1

β1

α2

β2

γ

Then, we have the presentation

M(Σ2) =
〈
A,B,C,D,E

∣∣ disjointness, braid, (ABCDE)6 = 1, H2 = 1, [H,A] = 1
〉
.

Here, the word “braid” stands for the 4 possible braid relations between A,B,C,D,E, the word “dis-
jointness” stands for the 6 possible disjointness relations between them and H := ABCDE2DCBA.

Note that the third relation follows directly from the 5-chain relation, while the fourth and fifth relations
are the hyperelliptic relations. Birman and Hilden [BH71, Theorem 8] obtained this presentation
by means of the 2-fold covering Σg → Σg/〈h〉 ∼= S2 (which is branched over 2g + 2 points). But,
unfortunately, their method do not apply to higher genus.

We know from Theorem 2.11 that mapping class groups are finitely generated. But there exist finitely
generated groups which are not finitely presented. For instance, the external semi-direct product

G := Z[t, t−1] o Z

where Z acts on Z[t, t−1] by

k ·
(∑

i

zit
i
)

=
∑
i

zit
i+k

is finitely generated by (t, 0) and (0, 1), but it can be shown that G has no presentation with finitely
many relations [Bau61].

4See the proof of [BH71, Equation (8)] for instance.
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The first proof that mapping class groups are finitely presented in genus g ≥ 3 is due to McCool in the
boundary case: regardingM(Σg,b) with b > 0 as a subgroup of the automorphism group of a free group,
he proved that M(Σg,b) is finitely presented by constructing a finite connected 2-dimensional CW-
complex whose fundamental group is isomorphic to M(Σg,b) [McC75]. Later, Hatcher and Thurston
introduced the complex of “cut systems” on which the mapping class group acts naturally, and they
proved by means of Cerf theory that this CW-complex is simply-connected [HT80]. When a group G
acts on a simply-connected CW-complex K in such a way that

� K/G has finitely many cells in dimension 0, 1 and 2,
� the stabilizer of any vertex of K is a finitely presented subgroup of G,
� the stabilizer of any edge of K is a finitely generated subgroup of G,

then the group G is finitely presented and there is a general procedure to derive from this a finite pre-
sentation of G. Thus, it follows from the work of Hatcher and Thurston that the mapping class group
is finitely presented. Instead of the complex of “cut systems” on a surface Σ, one can use the “curve
complex” (see the proof of Theorem 2.8) or the “arc complex” to prove with a similar strategy that
M(Σ) is finitely presented: see [Iva87] and [Iva02, Theorem 4.3.D] in the former case, and see [FM12,
§5.3] in the latter case. Building on the work of Hatcher and Thurston, Wajnryb [Waj83, Waj99] found
an explicit finite presentation of M(Σg,b) for b ∈ {0, 1} (see also Harer [Har83]). We refer to [Bir88,
§1], [Iva02, §4.3] or [FM12, §5.2.1] for a precise statement of Wajnryb’s presentation. In a few words,
this presentation is given by Humphries’ generators subject to the following relations: the disjointness
relations, the braid relations, a 3-chain relation, a hyperelliptic relation5, and an instance of the fol-
lowing relation (which is proved in Exercise 2.9).

(Lantern relation) In M(Σ0,4), we have τρ31τρ23τρ12 = τρ123τρ1τρ2τρ3 .

ρ2

ρ1 ρ3

ρ123

ρ12

ρ31

ρ23

So far, we have mainly considered presentations of the mapping class groups of closed surfaces.
Using Birman’s exact sequence (Proposition 2.9) and Lemma 3.6 below, it is not difficult to deduce
finite presentations of mapping class groups in the boundary case too, but the resulting presentations
turn out to be complicated for several boundary components. Nevertheless, Gervais managed to derive
from Wajnryb’s presentation another finite presentation of M(Σg,b) for any g > 1, b ≥ 0, and for
g = 1, b > 0 [Ger01]. Gervais’ presentation has more generators than Wajnryb’s presentation, but its
relations are much more symmetric and they essentially splits into two cases (the disjointness/braid
relations and some new “stars” relations).

To conclude, let us mention that the above techniques leading to finite presentations of groups are
also useful for the computation of low-dimensional (co)homology groups. Thus Harer used the work
of Hatcher and Thurston to compute the second homology group of mapping class groups [HT80].
Later Pitsch explained how to use Hopf’s formula to easily deduce this computation from Wajnryb’s
presentation [Pit99]. See also [FM12, §5.4]. Here, following Harer [Har83], we only explain how the
lantern relation can be used to derive the first homology group.

Corollary 2.16. The abelianization of the mapping class group is

M(Σg)[
M(Σg),M(Σg)

] '
 Z12 if g = 1,

Z10 if g = 2,
{0} if g ≥ 3.

Proof. We know from Theorem 2.8 that M(Σg) is generated by Dehn twists along non-separating
simple closed curves. If δ1 and δ2 are any two such curves, we know from Exercise 1.9 that there is an
orientation-preserving homeomorphism f : Σg → Σg satisfying f(δ1) = δ2. By Exercise 2.5, we get

τδ2=f ◦ τδ1 ◦ f−1.

5Specifically, for b = 0, this is the relation [h, τα1 ] = 1 written in terms of the Humphries’ generators. For b = 1, this

relation must be omitted.
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We deduce that the abelianization of M(Σg) is cyclic generated by τρ, where ρ is any non-separating
simple closed curve in Σg. Then the result in genus g ∈ {1, 2} is easily deduced from the presentations
of M(Σg) given in Theorem 2.14 and Theorem 2.15. In genus g ≥ 3, there is an embedding of Σ0,4 in
Σg such that each of the curves involved in the lantern relation is non-separating in Σg:

ρ1 ρ2 ρ3

ρ123

So, we conclude that τ4
ρ = τ3

ρ in the abelianization and the conclusion follows. �

2.5. Exercises.

Exercise 2.1. Show that M(S2) = {1} using the fact that S2 minus a point is homeomorphic to R2.

Exercise 2.2. Let z :=
[
S1 × {1/2}

]
be the generator of H1(S1 × [0, 1];Z) ' Z, and let ρ be the

1-chain {1} × [0, 1] of S1 × [0, 1]. Show that the map

η :M(S1 × [0, 1]) −→ Z
which sends the isotopy class [f ] to the unique integer kf such that [f(ρ)− ρ] = kf · z, is a group
isomorphism. Deduce that M(S1 × [0, 1]) is freely generated by the Dehn twist along S1 × {1/2}.

Exercise 2.3. Let b ≥ 1 be an integer, and let ρ1, . . . , ρb−1 be the following simple proper arcs in Σ0,b:

ρ1 · · · ρb−1

Show that any two f, h ∈ Homeo∂(Σ0,b) are isotopic rel ∂Σ0,b if and only if the simple proper arcs
f(ρi), h(ρi) are isotopic for every i.

Exercise 2.4. Let α be the boundary of a closed disk in an oriented surface Σ. Show that τα = 1 ∈M(Σ).

Exercise 2.5. Let Σ be an oriented surface. Show that the conjugate of a Dehn twist in M(Σ) is
again a Dehn twist: specifically, for any f ∈ M(Σ) and any simple closed curve α ⊂ Σ, we have
f τα f

−1 = τf(α).

Exercise 2.6. Let α be an oriented simple closed curve on an oriented surface Σ. Show that the action
of the Dehn twist τα in homology is given by the following formula:

(2.6) ∀x ∈ H1(Σ;Z), (τα)∗(x) = x+ ω([α], x) · [α].

Exercise 2.7. Let α and β be simple closed curves on an oriented surface Σ such that i(α, β) = 1,
and assume that they are oriented. Show that

τβτα(β) =

{
α if ω(α, β) = +1
α if ω(α, β) = −1

where α denotes the curve α with the opposite orientation.
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Exercise 2.8. Let α and β be simple closed curves on an oriented surface Σ such that i(α, β) = 1,
and let δ ⊂ Σ be a simple closed curve isotopic to the boundary of the subsurface N(α) ∪N(β):

α

β

δ

Show that τδ = (τατβ)6.

Exercise 2.9. Prove the lantern relation using (a slight variation of) Exercise 2.3.

Exercise 2.10. Let Σ be an oriented surface and denote by Mð(Σ) the “boundary-free” version of
the mapping class group of Σ. We number the boundary components of Σ from 1 to b. Show that
there is an exact sequence of groups

(2.7) Zb d−→M(Σ)
c−→Mð(Σ)

s−→ Sb −→ 1,

where the homomorphism d maps the i-th canonical vector of Zb to the Dehn twist along a curve
parallel to the i-th component of ∂Σ, the map c is the canonical homomorphism and the map s records
the way how homeomorphisms permute the components of ∂Σ. (Hint: to show the exactness atM(Σ),
one can use the fact that Homeo+(S1) deformation retracts to the group of rotations of S1.)

Exercise 2.11. Let Σ be a closed oriented surface and denote byM±(Σ) the “unoriented” version of
the mapping class group of Σ. Show that there is a split short exact sequence of groups

(2.8) 1 −→M(Σ)
e−→M±(Σ)

f−→ Z2 −→ 1

where e is the canonical homomorphism and f is defined by the condition f−1({0}) = e(M(Σ)).

* * *

Solution to Exercise 2.1. Let f : S2 → S2 be an orientation-preserving homeomorphism: it suffices
to show that f is homotopic to the identity. Fix a point x ∈ S2. Using rotations in R3, it is easy to
construct an isotopy I : S2 × [0, 1] → S2 such that I(−, 0) = id and I(−, 1) maps x to f−1(x). Then
f ◦ I is an isotopy between f and a self-homeomorphism of S2 which fixes x. Therefore, we can assume
without loss of generality that f(x) = x.

Since S2 \ {x} is homeomorphic to R2, we are reduced to prove that any self-homeomorphism of
R2 is homotopic to the identity. This is actually true for any continuous map f : R2 → R2, using the
“affine” homotopy

H : R2 × [0, 1] −→ R2, (x, t) 7−→ t · f(x) + (1− t) · x.

Solution to Exercise 2.2. We first check that η is a homomorphism. Let f, g ∈ Homeo∂(S1× [0, 1]).
Since f fixes the boundary and since all the homology of S1 × [0, 1] comes from the boundary, f acts
trivially in homology. Therefore,

[fg(ρ)− ρ] = f∗ ([g(ρ)− ρ]) + [f(ρ)− ρ] = [g(ρ)− ρ] + [f(ρ)− ρ]

which proves that kfg = kf + kg ∈ Z.
The injectivity of η is proved with the same kind of arguments as in Proposition 2.4. Let f ∈

Homeo∂(S1× [0, 1]) be such that η([f ]) = 0. The canonical projection R× [0, 1]→ S1× [0, 1] gives the

universal covering of S1 × [0, 1]. Thus, f can be lifted to a unique homeomorphism f̃ : R × [0, 1] →
R× [0, 1] such that f̃(0, 0) = (0, 0). Since π1(S1 × [0, 1]) ' Z is abelian and – as we observed above –
since f acts trivially at the level of homology, the map f acts trivially at the level of the fundamental

group: so f̃ is Z-equivariant. The fact that f̃(0, 0) = (0, 0) implies that f̃ fixes R× {0}; since kf = 0,

we also have f̃(0, 1) = (0, 1) so that f̃ fixes R× {1}. Therefore, the “affine” homotopy

H : (R× [0, 1])× [0, 1] −→ R× [0, 1], (x, t) 7−→ t · f̃(x) + (1− t) · x
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between the identity of R× [0, 1] and f̃ is such that H(−, t) is Z-equivariant and fixes the boundary at
each time t ∈ [0, 1]. Thus H descends to a homotopy rel ∂(S1 × [0, 1]) from the identity of S1 × [0, 1]
to f . Since homotopy coincides with isotopy in dimension two, we deduce that [f ] = 1 ∈M(S1× [0, 1]).

The Dehn twist along the curve S1×{1/2} is mapped by η to +1. Since +1 generates the group Z,
we deduce that η is also surjective. This argument also shows thatM(S1× [0, 1]) is generated by that
Dehn twist.

Solution to Exercise 2.3. Set Σ := Σ0,b. Any isotopy of simple proper arcs between fρi : [0, 1]→ Σ
and hρi : [0, 1]→ Σ is equivalent (by composition with h−1) to an isotopy of simple proper arcs between
h−1fρi : [0, 1]→ Σ and ρi : [0, 1]→ Σ. Similarly, any isotopy rel ∂Σ between f and h is equivalent (by
composition with h−1) to an isotopy rel ∂Σ between h−1f and idΣ. Therefore we can assume without
loss of generality that h = idΣ.

It is obvious that, for any f ∈ Homeo∂(Σ) isotopic rel ∂Σ to idΣ, the proper arc fρi is isotopic to
ρi for every i. To prove the converse, assume that fρi : [0, 1] → Σ is isotopic to ρi : [0, 1] → Σ for
every i ∈ {1, . . . , b−1}. We can assume that these “individual” isotopies can be unified into a “global”
isotopy

I : ([0, 1] t · · · t [0, 1])× [0, 1] −→ Σ

such that I(−, 0) = ρ1 t · · · t ρb−1 : [0, 1] t · · · t [0, 1] → [0, 1] and I(−, 1) = fρ1 t · · · t fρb−1 :
[0, 1] t · · · t [0, 1] → [0, 1]. As a general fact of differential topology,6 this isotopy can be extended to
an “ambient” isotopy rel ∂Σ: specifically, there exists an isotopy

Ĩ : Σ× [0, 1] −→ Σ

such that Ĩ(−, 0) = idΣ and Ĩ(−, 1) ◦
(
ρ1 t · · · t ρb−1

)
= f ◦

(
ρ1 t · · · t ρb−1

)
. Thus Ĩ(−, 1) and f are

two self-homeomorphisms of Σ which coincide on

G := ∂Σ ∪ ρ1([0, 1]) ∪ · · · ∪ ρb−1([0, 1]).

As a general fact of differential topology,7 we can also assume (after an isotopy of f) that they coincide
on a “regular” neighborhood N(G) of G. Since Σ \ intN(G) is a closed disk, we deduce from Proposi-

tion 2.3 that the restrictions of Ĩ(−, 1) and f to Σ \ intN(G) are isotopic relatively to the boundary.

By extending with the identity, we get an isotopy rel ∂Σ between Ĩ(−, 1) and f . The “concatenation”

of this isotopy with Ĩ provides an isotopy between f and idΣ.

Solution to Exercise 2.4. Let D be the closed disk bounded by α in Σ, and let α0 ⊂ int(D) be
a simple closed curve parallel to ∂D. Then the inclusion D ↪→ Σ induces a group homomorphism
M(D)→M(Σ). Since τα0

= 1 ∈M(D) by Proposition 2.3, we deduce that τα = τα0
= 1 ∈M(Σ).

Alternatively, starting from the defining formula of a Dehn twist, it is not difficult to construct an
explicit isotopy between τα : Σ→ Σ and the identity of Σ.

Solution to Exercise 2.5. Let α ⊂ Σ be a simple closed curve, and let f : Σ→ Σ be an orientation-
preserving homeomorphism fixing ∂Σ. We claim that

(2.9) f ◦ Tα ◦ f−1 = Tf(α) ∈ Homeo+,∂(Σ)

for some appropriate representatives Tα and Tf(α) of τα and τf(α), respectively. Indeed let N(α)

be a tubular neighborhood of α, and fix a parametrization p : S1 × [−1, 1] → N(α). As a tubular
neighborhood N(f(α)) of f(α), we can take f(N(α)) with parametrization f ◦ p. Then (2.9) can be
checked separately on Σ \N(f(α)) and on N(f(α)).

Solution to Exercise 2.6. The abelian group H1(Σ;Z) is generated by the homology classes of
oriented simple closed curves in Σ. Thus it is enough to prove (2.6) for the homology class x := [γ]
of an oriented simple closed curve γ ⊂ Σ. By applying an isotopy to γ, we can assume that γ is
transversal to α, so that α and γ meet in a finite number n of points. We consider the cyclic order on
α ∩ γ determined by the orientation of γ, which identifies α ∩ γ to the cyclic group Zn. As a 1-chain,
the oriented simple closed τα(γ) is homologous to∑

i∈Zn

(γi,i+1 + εi · α)

where γi,i+1 is the oriented arc on γ between the points i and i+ 1 and where

εi :=

{
+1, if (~αi, ~γi) is direct
−1, otherwise

}
.

6This is the “isotopy extension theorem,” see [Hir76].
7This is by using the theorem of collar/tubular neighborhoods, see [Hir76].



23

Therefore,

(τα)∗(x) = [τα(γ)] =
[ ∑
i∈Zn

(γi,i+1 + εi · α)
]

=
[ ∑
i∈Zn

γi,i+1

]
+
( ∑
i∈Zn

εi

)
· [α] = [γ] + ω([α], [γ]) · [α].

Solution to Exercise 2.7. We can assume without loss of generality that Σ := Σ1,1 is a torus with
one hole, and that α, β are the following simple closed curves:

α

β

By applying subsequently τα and τβ to a parallel copy of β, we get

τα−→ τβ−→ ∼=

Hence τβτα(β) = α as unoriented curves. The statement about oriented curves is proved by adding
some orientations to α and β on the above pictures.

Solution to Exercise 2.8. We can assume without loss of generality that Σ := Σ1,1 is a torus with
one hole, and that α, β, δ are the following simple closed curves:

α

β

δ

We consider the following two simple proper arcs ρ1 and ρ2 in Σ:

ρ2

ρ1

Let N be a “regular” neighborhood of ∂Σ∪ ρ1 ∪ ρ2. We observe that Σ \ int(N) is a closed disk: then,

by using the same kind of arguments as in Exercise 2.3, we see that any two f, h ∈ Homeo∂(Σ) are
isotopic rel ∂Σ if and only if f(ρi) is isotopic to h(ρi) for every i ∈ {1, 2}. Therefore, it is enough
to “test” the identity τδ = (τατβ)6 on each of the arcs ρ1, ρ2; since (τατβ)6 = (τβτα)6 by the braid
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relation, and for symmetry reasons, it is actually enough to “test” this identity on ρ1. We have

τβ−→ τα−→ ∼=

↓ τβ

τα←−

(τατβ)
3 ↓

∼= τβ←−

It follows that

(τατβ)
3

−→
(τατβ)

6

−→
∼=

We conclude that (τατβ)6(ρ1) = τδ(ρ1) as required.

Solution to Exercise 2.9. We set Σ := Σ0,4 and consider the simple proper arcs ρ1, ρ2, ρ3 ⊂ Σ
shown below:

ρ1
ρ3

ρ2

Let N be a “regular” neighborhood of ∂Σ ∪ ρ1 ∪ ρ2 ∪ ρ3. We observe that Σ \ int(N) is a closed disk:

hence, by proceeding as in Exercise 2.3, we see that any two f, h ∈ Homeo∂(Σ) are isotopic rel ∂Σ if
and only if f(ρi) is isotopic to h(ρi) for every i ∈ {1, 2, 3}. Therefore, it is enough to “test” the lantern
relation on each of the arcs ρ1, ρ2, ρ3. This is easily checked: see for instance [FM12, Figure 5.2].

Solution to Exercise 2.10. The fact that the group homomorphism d : Zb →M(Σ) is well defined
follows from the disjointness relation, and the surjectivity of s follows from Exercise 1.8. Hence we
only have to prove the exactness of the sequence (2.7) at M(Σ) and at Mð(Σ).

The fact that c
(
M(Σ)

)
⊂ ker(s) is obvious. To prove the converse inclusion, let [h] ∈ ker(s). Then

the homeomorphism h : Σ → Σ maps every boundary component δ of Σ to itself. Since h preserves
the orientation, the self-homeomorphism h|δ of δ ∼= S1 is orientation-preserving: hence h|δ is isotopic
to the identity of δ. There is a neighborhood N(δ) of δ in Σ which can be identified to δ × [0, 1] in
such a way that δ ⊂ N(δ) corresponds to δ × {1}. (This is the “collaring theorem” of differential
topology, see [Hir76].) Using this identification, we easily construct an isotopy I : Σ× [0, 1]→ Σ such
that I(−, 0) = h and I(−, 1)|δ = idδ. Doing this construction for every boundary component of Σ, we
see that h is isotopic to a self-homeomorphism of Σ fixing ∂Σ: therefore [h] belongs to the image of c.

To show that d(Zb) ⊂ ker(c), it is enough to prove that the Dehn twist along the “core” α :=
S1 × {1/2} of the annulus A := S1 × [0, 1] is isotopic to idA through an isotopy which fixes S1 × {0}
(but which moves S1 × {1}). For instance, the isotopy I : A× [0, 1]→ A defined by

I
(
(e2iπθ, r), t

)
:=
(
e2iπ(θ+r(1−t)), r

)
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has the desired properties. To show the converse inclusion, let [h] ∈ ker(c). Then there is an isotopy
I : Σ × [0, 1] → Σ such that I(−, 0) = idΣ and I(−, 1) = h, but this isotopy does not need to fix ∂Σ.
For every boundary component δ of Σ, the restriction of I to δ× [0, 1] provides an isotopy between the
identity of δ and itself. In the sequel, we identify δ with S1. It is known that the map

S1 −→ Homeo+(S1), u 7−→ (multiplication by u)

is a homotopy equivalence (see [Iva02, Corollary 2.7.B] for instance). Since π1(S1) ' Z, we deduce that
there exists a (unique) k ∈ Z such that the loop of Homeo+(S1) based at idS1 represented by I|δ×[0,1]

is homotopic to the loop t 7→ (z 7→ ze2iπkt): let H be such a homotopy. As in the previous paragraph,
we identify a neighborhood N(δ) of δ with δ× [0, 1] in such a way that δ ⊂ N(δ) corresponds to δ×{1}.
Using this identification and the homotopy H, we can construct from I a new isotopy I ′ : Σ× [0, 1]→ Σ
such that I ′(−, 0) = idΣ, I ′(−, 1) = h and I(z, t) = ze2iπkt for every (z, t) ∈ δ × [0, 1]. Finally, we can
construct from I ′ a new isotopy I ′′ : Σ× [0, 1]→ Σ fixing δ such that I ′′(−, 1) = h and [I ′′(−, 0)] = τkδ′
where δ′ is a simple closed curve parallel to δ. Doing these constructions for every boundary component
of Σ, we deduce that the isotopy class of h rel ∂Σ belongs to the image of d.

N.B. The map d is not injective in general. For instance, if Σ is an annulus, the homomorphism
d : Z2 →M(Σ) ' Z is given by (l1, l2) 7→ l1 + l2.

Solution to Exercise 2.11. By definition of f , we have for any self-homeomorphism h of Σ

f([h]) = 1 ⇐⇒ h reverses the orientation

and it easily follows that f is a group homomorphism. To show the surjectivity of f , we embed Σ in
R3 in such a way that there is an affine plane H ⊂ R3 whose corresponding symmetry leaves Σ globally
invariant. The restriction s of this symmetry to Σ reverses the orientation, so that f([s]) = 1 and f is
surjective. This also shows that the homomorphism Z2 →M±(Σ) defined by 1 7→ [s] is a section of f .

The exactness of (2.8) at M±(Σ) is obvious, and it only remains to justify that e is injective.
This follows from the fact that, during an isotopy, an orientation-preserving homeomorphism remains
orientation-preserving.
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3. Surface braid groups

We now give a brief introduction to surface braid groups, which can also be viewed as mapping class
groups of a certain kind. The reader may consult the monographs [Bir74, KT08] for further details.

3.1. Definition of surface braid groups. We shall give two equivalent definitions of surface braid
groups. Let Σ be an oriented surface and let n ≥ 1 be an integer. We assume that n distinct points
x1, . . . , xn have been fixed in the interior of Σ: we call them the marked points of Σ.

The first definition is based on the notion of “configuration space”. The configuration space of n
ordered points in Σ is the topological space

Fn(Σ) :=
{

(z1, . . . , zn) ∈ int(Σ)n : ∀i 6= j, zi 6= zj
}

and the configuration space of n unordered points in Σ is the quotient space

Cn(Σ) := Fn(Σ)/Sn,

where the symmetric group Sn acts on (the left of) Fn(Σ) by permutation of the coordinates:

∀σ ∈ Sn, ∀(z1, . . . , zn) ∈ Fn(Σ), σ · (z1, . . . , zn) =
(
zσ−1(1), . . . , zσ−1(n)

)
.

In particular, the n marked points of Σ define some elements

x := (x1, . . . , xn) ∈ Fn(Σ) and {x} := {x1, . . . , xn} ∈ Cn(Σ).

Definition 3.1. The surface braid group on n strands in Σ is

Bn(Σ) := π1

(
Cn(Σ), {x}

)
and the pure surface braid group on n strands in Σ is

PBn(Σ) := π1

(
Fn(Σ), x

)
.

When Σ := D2 is a disk, Bn(Σ) and PBn(Σ) are simply denoted by Bn and PBn, respectively, and
they are called the braid group and the pure braid group on n strands. In this case, the marked points
x1, . . . , xn are assumed to be uniformly distributed (in this order) along the interior of the segment
[−1, 1]× {0} ⊂ D2 ⊂ R2.

Lemma 3.2. The canonical projection p : Fn(Σ) → Cn(Σ) is a regular covering map, with automor-
phism group Sn.

Proof. We have the following general principle: given a properly discontinuous action of a group G on
an arc-connected and locally arc-connected topological space Y , which means that

∀y ∈ Y, ∃ neighborhood V 3 y, ∀g ∈ G \ {1}, g(V ) ∩ V = ∅,
the quotient map Y → Y/G is a regular covering map with automorphism group G. The fact that Sn

acts properly discontinuously on Fn(Σ) is easily checked. �

If follows from Lemma 3.2 that we have a short exact sequence of groups

(3.1) 1 −→ PBn(Σ)
p]−→Bn(Σ)

s−→Sn −→ 1.

Here the map p] : π1(Fn(Σ), x) → π1(Cn(Σ), {x}) is the homomorphism induced by the map p, while
s : Bn(Σ) → Sn is the canonical map π1(Cn(Σ), {x}) → π1(Cn(Σ), {x})/p]π1(Fn(Σ), x) composed
with the isomorphism (depending on x)

π1

(
Cn(Σ), {x}

)
/p]π1

(
Fn(Σ), x

)
−→
'

Aut(p) = Sn

that is given by the general theory of covering spaces. Specifically, for any loop ` : [0, 1] → Cn(Σ)
based at {x}, we have

s([`]) · x = ˜̀(1)

where ˜̀ : [0, 1]→ Fn(Σ) is the unique lift of ` such that ˜̀(0) = x.
We now give a second definition of surface braid groups, which corresponds better to one’s intuition

of what should be a “braid.”

Definition 3.3. A geometric braid on n strands in Σ is an embedding of n intervals into the 3-
manifold Σ× [0, 1]

β : {1, . . . , n} × [0, 1] −→ Σ× [0, 1]

such that the following holds:

� the image of β is contained in int(Σ)× [0, 1];
� for all k ∈ {1, . . . , n}, β(k, 0) = (xk, 0);
� there exists s(β) ∈ Sn such that, for all k ∈ {1, . . . , n}, β(k, 1) =

(
xs(β)−1(k), 1

)
;
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� for all t ∈ [0, 1], the hypersurface Σ× {t} cuts the image of β into n distinct points.

If s(β) is the trivial permutation, then β is said to be pure. Two geometric braids β0, β1 are isotopic
if there exists a continuous map

H : {1, . . . , n} × [0, 1]× [0, 1] −→ Σ× [0, 1]

such that H(−,−, s) is a geometric braid for all s ∈ [0, 1], and H(−,−, s) = βs for s = 0, 1.

Thus, a geometric braid β on n strands consists of n strings connecting the set of points {x} × {0} up
to {x} × {1} in Σ× [0, 1] without going “downwards” (as follows from the third condition).

Example 3.4. Assume that Σ := D2. Up to isotopy, we can assume that any geometric braid β is
smooth and that the composition of β with the projection D2 × I → R × I defined by ((x1, x2), t) 7→
(x1, t) has only transverse double points. Thus, we can encode the isotopy class of a geometric braid
by a braid diagram where those double points are depicted as

or

in order to record the information of the overcrossing/undercrossing strands. For instance, the following
diagram represents a geometric braid β on 5 strands whose corresponding permutation s(β) is given
by (1, 2, 3, 4, 5) 7→ (1, 3, 4, 5, 2):

(x1, 0) (x2, 0) (x3, 0) (x4, 0) (x5, 0)

(x1, 1) (x2, 1) (x3, 1) (x4, 1) (x5, 1)
D2 × {1}

D2 × {0} �

We can multiply any two geometric braids β1 and β2 in the following way. The product β1 · β2 is
the geometric braid

{1, . . . , n} × [0, 1] 3 (k, t) 7−→
{

1
2 × β1(k, 2t) if t ∈ [0, 1/2],
1
2 × β2

(
s(β1)−1(k), 2t− 1

)
+ 1

2 if t ∈ [1/2, 1],

where the map 1
2 × (−) : Σ× [0, 1]→ Σ× [0, 1] in the first case is defined by (z, t) 7→ (z, t/2) and the

map 1
2 × (−) + 1

2 : Σ× [0, 1] → Σ× [0, 1] in the second case is defined by (z, t) 7→ (z, t/2 + 1/2). In a
schematical way, we have

β1 · β2 :=
β2

β1
.

The trivial braid on n strands in Σ is defined by (k, t) 7→ (xk, t), i.e. it goes straightly from {x} × {0}
to {x} × {1}. It is easily verified that the above multiplication law defines on the quotient set

Bgeo
n (Σ) := {geometric braids on n strands in Σ}/isotopy

a structure of group whose identity element is represented by the trivial braid.
We now justify that the above two definitions of a surface braid group are equivalent. Any loop `

in Cn(Σ) based at {x} lifts to a unique path ˜̀ in Fn(Σ) joining x to s([`]) · x. Hence, we can associate
to the loop ` the geometric braid β = β(`) defined by

∀k ∈ {1, . . . , n}, ∀t ∈ [0, 1], β(k, t) :=
(
k-th coordinate of ˜̀(t), t).

If we perturb the based loop ` by a homotopy, then the path ˜̀ is changed by a homotopy (fixing
endpoints) so that the geometric braid β is only changed by an isotopy. Thus, we have defined a map

(3.2) Bn(Σ) −→ Bgeo
n (Σ), [`] 7−→ [β(`)]
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which is easily seen to respect the multiplication. To proceed, we observe that we could have replaced
in Definition 3.3 the third condition by the following stronger condition:

� for all t ∈ [0, 1] and for all k ∈ {1, . . . , n}, β(k, t) belongs to the hypersurface Σ× {t}.
Then it can be proved that any geometric braid in the “weak” sense is isotopic to a geometric braid in
the “strong” sense, and that if two geometric braids in the “strong” sense are isotopic in the “weak”
sense, then so they are in the “strong” sense. It follows that the map (3.2) is a group isomorphism.
We also observe that the diagram

Bn(Σ)
' //

s
##

Bgeo
n (Σ)

s
{{

Sn

is commutative. In particular, the subgroup PBn(Σ) of Bn(Σ) corresponds to pure geometric braids
through (3.2). In the sequel, we will make no difference between the groups Bn(Σ) and Bgeo

n (Σ), and
(isotopy classes of) geometric braids will be simply referred to as “braids.”

3.2. Presentations of surface braid groups. We only consider the case of a disk. (See Remark 3.10
below for the general case.) Let n ≥ 1 be an integer. For all i = 1, . . . , n − 1, we denote by σi ∈ Bn
the braid defined by the following diagram:

1 · · · i i+ 1 · · · n

These braids can serve as generators of a presentation of Bn, which is due to Artin [Art25] and is
considered to be the “canonical” presentation of the braid group.

Theorem 3.5 (Artin 1925). The braid group Bn has a presentation with generators σ1, . . . , σn−1 and
with relations {

σiσj = σjσi if |i− j| ≥ 2,
σiσjσi = σjσiσj if |i− j| = 1.

The proof of Theorem 3.5 given below builds on the short exact sequence (3.1), namely

1 −→ PBn −→ Bn
s−→ Sn −→ 1.

It consists in “merging” a presentation of Sn with a presentation of PBn using the following lemma.

Lemma 3.6. Consider a short exact sequence of groups

(3.3) 1 −→ S
i−→G

p−→Q −→ 1

where S and Q are defined by some presentations:

S := 〈A | B〉 and Q := 〈X | Y 〉 .

Let F(X) be the free group generated by the set X and let t : F(X)→ G be a homomorphism such that
pt(x) = x ∈ Q for all x ∈ X. For all y ∈ Y , let wy be a word in A such that i(wy) = t(y) ∈ G and, for
all a ∈ A, x ∈ X, let vx,a be a word in A such that i(vx,a) = t(x)i(a)t(x−1) ∈ G. Then the map

ϕ :
〈
A ∪X

∣∣ B ∪ {wyy−1|y ∈ Y } ∪ {vx,axa−1x−1|a ∈ A, x ∈ X}
〉
−→ G

defined by ϕ|A := i|A and ϕ|X := t|X is an isomorphism, and so it gives a presentation of G.

A special case of interest is when the short exact sequence (3.3) is split, i.e. when there is a group
homomorphism s : Q→ G such that p◦ s = idQ. In this case, the statement can be applied to the map
t : F(X)→ G defined by x 7→ s(x), and we can assume that wy is the empty word for each y ∈ Y .
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Proof of Lemma 3.6. Denote by G0 the domain of ϕ, and consider the subgroup S0 of G0 generated
by A. Because of the third kind of defining relations for G0, S0 is a normal subgroup of G0 so that we
can also consider the quotient group Q0 := G0/S0.

We have ϕ(S0) = i(S) and ϕ|S0 : S0 → i(S) is injective because of the first kind of defining relations
for G0, hence an isomorphism ϕS : S0 → S. Moreover, ϕ induces a homomorphism ϕQ : Q0 → Q since
ϕ(S0) = i(S). This homomorphism is certainly surjective (since ϕ is so) and is injective because of the
second kind of defining relations for G0. We sum up the previous constructions in the commutative
diagram

1 // S0 //

ϕS '
��

G0 //

ϕ

��

Q0

ϕQ '
��

// 1

1 // S
i
// G

p
// Q // 1

whose rows are short exact sequences. We deduce by diagram chasing that ϕ is an isomorphism. �

For all i, j ∈ {1, . . . , n} such that i < j, let aij ∈ PBn be the pure braid defined by the following
diagram:

1 · · ·· · · · · ·i j n

Note that

(3.4) aij = σ−1
j−1 · · ·σ

−1
i+1 · σ

2
i · σi+1 · · ·σj−1.

Here is the presentation of the pure braid group that we will use to prove Theorem 3.5. This is also
due to Artin [Art47].

Theorem 3.7 (Artin 1947). The pure braid group PBn has a presentation with generators aij (for all
1 ≤ i < j ≤ n) and with relations

arsaija
−1
rs = aij if r < s < i < j or i < r < s < j,

arsaija
−1
rs = a−1

rj aijarj if r < s = i < j,

arsaija
−1
rs = [asj , arj ]

−1aij [asj , arj ] if r < i < s < j,
arsaija

−1
rs = (asjaij)

−1aij(asjaij) if r = i < s < j.

Here [x, y] denotes the commutator x−1y−1xy. Note that the relations given for PBn are indexed by
all possible pairs (r, s) and (i, j) with r < s, i < j and s < j.

For all i ∈ {1, . . . , n− 1}, let τi ∈ Sn be the transposition (i, i+ 1). Here is the presentation of the
symmetric group that we will use to prove Theorem 3.5. This is a classical result which seems to go
back to Moore [Moo97].

Theorem 3.8 (Moore 1897). The symmetric group Sn has a presentation with generators τi (for all
1 ≤ i ≤ n− 1) and with relations τ2

i = 1
τiτj = τjτi if |i− j| ≥ 2,
τiτjτi = τjτiτj if |i− j| = 1.

Assuming Theorem 3.7 and Theorem 3.8 for granted, we can now prove Artin’s presentation of the
braid group.

Sketch of proof of Theorem 3.5. We apply Lemma 3.6 to the short exact sequence (3.1). The group
PBn has the presentation given by Theorem 3.7, while the group Sn has the presentation given by
Theorem 3.8. The braid σi satisfies s(σi) = τi ∈ Sn. Thus, the group Bn is generated by

{aij | 1 ≤ i < j ≤ n} ∪ {σi | i = 1, . . . , n− 1}
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with three kinds of relations: 1) the relations of PBn, 2) the relations arising from Sn and 3) the
relations of “conjugation-type.” Relations 2) can be choosen as follows:

2.a) σ2
i = ai,i+1,

2.b) σiσj = σjσi if |i− j| ≥ 2,
2.c) σiσjσi = σjσiσj if |i− j| = 1.

As for relations 3), they are of the form

σkaijσ
−1
k = word in the ars’s

for all 1 ≤ i < j ≤ n and k ∈ {1, . . . , n− 1}. Among them, we have the relations of the form

3.a) σj−1aijσ
−1
j−1 = ai,j−1

for all i, j such that j > i + 1. Relations 3) that are no of type 3.a) are declared to be of type 3.b).
The relations 3.a) and 2.a) can be used to write each aij in terms of σ1, . . . , σn−1. Thus, we get a
new presentation of Bn with generators σ1, . . . , σn−1 and with relations 1], 2.b), 2.c) and 3.b], where
relations 1] and 3.b] are obtained from 1) and 3.b) respectively by expressing each ars in terms of
the σi’s. It is a long but straightforward computation to check that each of the relations of type 1] or
3.b] is a consequence of 2.b) and 2.c). The conclusion follows from this check. �

It now still remains to prove Theorem 3.7 and Theorem 3.8. We start with the latter.

Proof of Theorem 3.8. We repeat the proof of [Bur55, Note C] with some slight variations. Let S0
n be

the presented group

S0
n :=

〈
τ1, . . . , τn−1

∣∣∣∣∣∣
τ2
i = 1
τiτj = τjτi if |i− j| ≥ 2
τiτjτi = τjτiτj if |i− j| = 1

〉
.

As it is easily checked, there is a group homomorphism ϕ : S0
n → Sn defined by τi 7→ (i, i + 1). It is

surjective since the transpositions (1, 2), (2, 3), . . . , (n− 1, n) generate Sn. Since the cardinality of Sn

is n!, the bijectivity of ϕ will follow from the fact that S0
n is finite with cardinality |S0

n| ≤ n!. To prove
this, we consider the subgroup H0 of S0

n generated by τ1, . . . , τn−2 and the following n cosets of S0
n:

H0, H0τn−1︸ ︷︷ ︸
=:H1

, H0τn−1τn−2︸ ︷︷ ︸
=:H2

, . . . , H0τn−1τn−2 · · · τ1︸ ︷︷ ︸
=:Hn−1

.

We claim the following.

Fact. For any i ∈ {0, . . . , n−1} and j ∈ {1, . . . , n−1}, there is a k ∈ {0, . . . , n−1} such that Hiτj ⊂ Hk.

Since 1 ∈ H0, we deduce that any element of S0
n belongs to one of the cosets H0, . . . ,Hn−1. There is

an obvious surjection S0
n−1 → Hi for every i. Clearly S0

2 is the cyclic group of order 2. Hence, by an
induction on n ≥ 2, we conclude that S0

n is finite with cardinality

|S0
n| ≤ n · (n− 1) · · · 2 = n!

To justify the above fact, it suffices to observe that

(
τn−1 · · · τs+1τs

)
τj =


τj
(
τn−1 · · · τs+1τs

)
if j < s− 1,

τj−1

(
τn−1 · · · τs+1τs

)
if j > s,

τn−1 · · · τs+1τsτs−1 if j = s− 1,
τn−1 · · · τs+1 if j = s,

where the second identity follows from the relation (τjτj−1)τj = τj−1(τjτj−1). �

Theorem 3.7 will be proved by an induction on n ≥ 1. On the one hand, there is a homomorphism

p : PBn+1 −→ PBn

which consists in “forgetting” the last string of a pure braid on (n + 1) strands. On the other hand,
there is a group homomorphism

i : π1

(
D2 \ {x1, . . . , xn}, xn+1

)
−→ PBn+1

which sends (the homotopy class of) a loop α to (the isotopy class of) the geometric braid defined by
(k, t) 7→ (xk, t) for k ≤ n and by (n+ 1, t) 7→ (α(t), t).

Proposition 3.9. The sequence of groups

(3.5) 1 −→ π1

(
D2 \ {x1, . . . , xn}, xn+1

) i−→PBn+1
p−→PBn −→ 1

is exact and it splits.
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Proof. We note that p : PBn+1 → PBn is the group homomorphism f] induced by the map

f : Fn+1(D2) −→ Fn(D2), (z1, . . . , zn, zn+1) 7−→ (z1, . . . , zn),

and that f has a right inverse. Specifically the continuous map s : Fn(D2) → Fn+1(D2) defined by

(z1, . . . , zn) 7→
(
z1, . . . , zn,

√
max(|z1|, · · · , |zn|)

)
satisfies fs = idFn(D2). Besides, we note that i is the

group homomorphism induced by the map

D2 \ {x1, . . . , xn} −→ Fn+1(D2), z 7−→ (x1, . . . , xn, z),

whose image is f−1(x1, . . . , xn). Thus, we are asked to prove that the sequence

(3.6) 1 −→ π1

(
f−1(x), x+

)
−→ π1

(
Fn+1(D2), x+

) f]−→π1

(
Fn(D2), x

)
−→ 1

is split exact, where x denotes the base point (x1, . . . , xn) of Fn(D2) and x+ denotes the base point
(x1, . . . , xn+1) of Fn+1(D2). It suffices to prove that f is a fiber bundle: then the long exact sequence
of homotopy groups induced by f restricts to (3.6), since the existence of a right inverse for f implies
that f] : πk(Fn+1(D2))→ πk(Fn(D2)) is a surjection for any k ≥ 1.

To show that f is a fiber bundle, let us consider a point b = (b1, . . . , bn) ∈ Fn(D2). The minimum of{
|bi − bj | > 0

∣∣1 ≤ i < j ≤ n
}
∪
{

1− |bi| > 0|i = 1, . . . , n
}

is denoted by ε. Then, the product of open
disks

U := D(b1, ε/3)× · · · ×D(bn, ε/3)

(centered at the points bi’s with radius ε/3 in C) is an open neighborhood of b in Fn(D2). Let

K := D(b1, ε/3) ∪ · · · ∪D(bn, ε/3) ⊂ int(D2) and let ϕ : U ×K → K be a continuous map such that,
for all u ∈ U , ϕu := ϕ(u,−) : K → K is a homeomorphism which is the identity on ∂K, and satisfies
ϕu(ui) = bi for all i = 1 . . . , n. The existence of such a map ϕ follows from the following fact, which is
easily checked.

Fact. Let b ∈ D(0, 1). For all u ∈ D(0, 1), let φu : D(0, 1) → D(0, 1) be the map defined by

φu(tu+ (1− t)v) = tb+ (1− t)v for all v ∈ S1 = ∂D(0, 1) and t ∈ [0, 1]. Then, φu is a homeomorphism

which is the identity on S1 and sends u to b. Moreover, the map φ : D(0, 1)×D(0, 1)→ D(0, 1) defined
by (u, z) 7→ φu(z) is continuous.

u

b

v v

z

φu(z)

φu−→

We still denote by ϕu : D2 → D2 the extension of ϕu by the identity. Then, there is a homeomorphism
f−1(U)→ U × f−1(b) defined by

(z1, . . . , zn, zn+1) 7→
(
z1, . . . , zn, (b, ϕ(z1,...,zn)(zn+1))

)
.

We conclude that f is a fiber bundle with fiber D2 \ {x1, . . . , xn}. �

We can now conclude the proof of Artin’s theorem.

Sketch of proof of Theorem 3.7. The theorem trivially holds for n = 1 (and it also holds for n = 2
according to Exercice 3.1). Assume that the theorem is valid for n strands. Then, Lemma 3.6 can be
applied to the short exact sequence (3.5) in order to get a presentation of PBn+1. For this, we observe
that the group π1

(
D2 \ {x1, . . . , xn}, xn+1

)
is freely generated by [`1] . . . , [`n], where `i is represented

by the following loop:

�x1
�xi−1 �xi �xi+1 �xn �xn+1
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The image of [`i] in PBn+1 is the pure braid ai,n+1. Taking advantage of the fact that (3.5) is split,
we deduce that PBn+1 is generated by

{ai,n+1|i = 1, . . . , n} ∪ {ars|1 ≤ r < s ≤ n}

and that the relations are those from PBn together with the relations expressing the conjugate
arsai,n+1a

−1
rs in terms of a1,n+1, . . . , an,n+1 for all 1 ≤ i ≤ n and for all 1 ≤ r < s ≤ n. The

latter are easily computed and the conclusion follows. �

Remark 3.10. The first presentations of surface braid groups for arbitrary surfaces have been obtained
by Birman [Bir69c] and Scott [Sco70]. González-Meneses has used the same strategy as the above proof
of Theorem 3.5 to compute presentations of surface braid groups for arbitrary closed surfaces [GM01].
Finally, Bellingeri has obtained some presentations of Bn(Σ) and PBn(Σ) for arbitrary surfaces Σ
in [Bel04]. �

3.3. Surface braid groups as mapping class groups. To conclude this section, we explain how to
interpret surface braid groups as mapping class groups of a special kind. Let Σ be an oriented surface
with marked points x1, . . . , xn ⊂ int(Σ). We denote {x} := {x1, . . . , xn} and x := (x1, . . . , xn). We
consider the groups

Homeo+,∂(Σ, {x}) :=
{
f ∈ Homeo+,∂(Σ) : f({x}) = {x}

}
and Homeo+,∂(Σ, x) :=

{
f ∈ Homeo+,∂(Σ) : f(x) = x

}
which we equip with the compact-open topology.

Definition 3.11. The mapping class group of Σ with marked points x1, . . . , xn is

M(Σ, {x}) := π0

(
Homeo+,∂(Σ, {x})

)
and the pure mapping class group of Σ with marked points x1, . . . , xn is

PM(Σ, x) := π0

(
Homeo+,∂(Σ, x)

)
.

For any [f ] ∈ M(Σ, {x}), we denote by s([f ]) ∈ Sn the unique permutation such that f(xi) =
xs([f ])(i) for all i ∈ {1, . . . , n}. Then, we have the short exact sequence of groups

(3.7) 1 // PM(Σ, x)
i]
//M(Σ, {x}) s // Sn

// 1

where i] is the map induced by the inclusion i : Homeo+,∂(Σ, x)→ Homeo+,∂(Σ, {x}).

Remark 3.12. We have already met the above groups in an equivalent form. Indeed, when ∂Σ = ∅,
the group M(Σ, {x}) is essentially the “boundary-free” version Mð(Σ) of the mapping class group
considered in §2.1, while PM(Σ, x) corresponds to the image of M(Σ) in Mð(Σ). Then (3.7) is a
portion of the sequence (2.7). �

The next theorem, which relates surface braid groups to mapping class groups in the general case,
is due to Birman [Bir69b].

Theorem 3.13 (Birman 1969). We have the following commutative diagram with exact rows/columns
in the category of groups:

(3.8) 1

��

1

��

π1

(
Homeo+,∂(Σ)

)
// PBn(Σ)

$ //

p]

��

PM(Σ, x) //

i]

��

M(Σ) // 1

π1

(
Homeo+,∂(Σ)

)
// Bn(Σ)

$ //

s

��

M(Σ, {x}) //

s

��

M(Σ) // 1

Sn

��

Sn

��

1 1
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Sketch of proof. It is not difficult to check that the evaluation map

e : Homeo+,∂(Σ) −→ Fn(Σ), f 7−→ f(x)

is a fiber bundle with fiber e−1(x) = Homeo+,∂(Σ, x): see [Bir69b, Lemma 1.2] or Proposition 3.9

above for similar arguments. We take idΣ as a base-point for Homeo+,∂(Σ) and x as a base-point for
Fn(Σ). Then the long exact sequence in homotopy groups induced by e terminates with

π1

(
Homeo+,∂(Σ), idΣ

)
// π1

(
Fn(Σ), x

)︸ ︷︷ ︸
=PBn(Σ)

∂]
// π0

(
Homeo+,∂(Σ, x)

)︸ ︷︷ ︸
=PM(Σ,x)

// π0

(
Homeo+,∂(Σ)

)︸ ︷︷ ︸
=M(Σ)

→ 1

since, according to Exercise 3.2, the space Fn(Σ) is arc-connected. By definition of the connecting
homomorphism ∂], we have

∂]([β]) = [β̃(1)]

for any pure braid β : [0, 1] → Fn(Σ), where β̃ : [0, 1] → Homeo+,∂(Σ) is an isotopy starting at

β̃(0) = idΣ and such that β(t) = β̃(t)(x) for any t ∈ [0, 1]. We claim that ∂] is a group anti-

homomorphism. Indeed, for any two pure braids β, β′ : [0, 1] → Fn(Σ), let β̃′ ◦ β̃(1) be the path

[0, 1]→ Homeo+,∂(M) defined by t 7→ β̃′(t) ◦ β̃(1). Denote by ∗ the concatenation of paths. Then, the

path β̃ ∗ (β̃′ ◦ β̃(1)) projects to β ∗ β′ by the evaluation map e and starts at idΣ, so that

∂]([β] [β′]) = ∂]([β ∗ β′]) =
[
β̃′(1) ◦ β̃(1)

]
=
[
β̃′(1)

] [
β̃(1)

]
= ∂]([β

′]) ∂]([β]).

We define $ to be the composition of ∂] with the group inversion.
Thus, we haved obtained the first row of the diagram (3.8). The second row is obtained in the same

way by considering the evaluation map

Homeo+,∂(Σ) −→ Cn(Σ), f 7−→ f({x})
(This is the composition of the above fiber bundle map e : Homeo+,∂(Σ) → Fn(Σ) with the covering

map p : Fn(Σ) → Cn(Σ), hence it is a fibration with fiber Homeo+,∂(Σ, {x}).) The commutativity of
the subdiagram consisting of the first two rows follows from the naturality of the long exact sequence
of homotopy groups for fibrations. Finally, the identity s ◦ $ = s : Bn(Σ) → Sn easily follows from
the definitions. �

Note that, in general, the group homomorphism π1(Homeo+,∂(Σ))→ PBn(Σ) is not trivial, so that
$ is not necessarily injective. (See [Bir69b, §1] and [Bir74, §4.1] for further details.) Nevertheless,

this homomorphism is certainly trivial when Homeo+,∂(Σ) is contractible. This is for instance the case
when χ(Σ) < 0 [EE69, ES70, Gra73] or in the following situation.

Example 3.14. Assume that Σ := D2 is a disk. Then, by Proposition 2.3, the space Homeo+,∂(Σ) is
contractible. It follows from Theorem 3.13 that $ : PBn → PM(D2, x) and $ : Bn → M(D2, {x})
are isomorphisms. �

3.4. Exercises.

Exercise 3.1. Show that F2(D2) has the homotopy type of S1, and deduce from this some presenta-
tions of the groups PB2 and B2.

Exercise 3.2. Show that, for any oriented surface Σ and for any integer n ≥ 1, the spaces Fn(Σ) and
Cn(Σ) are path-connected.

Exercise 3.3. Let n ≥ 1 be an integer. Compute the abelianization PBn/[PBn, PBn] of the pure
braid group PBn.

Exercise 3.4. Let n ≥ 1 be an integer.

(a) Use Proposition 3.9 to show that PBn+1 is an iterated semi-direct product

PBn+1 = Fn o (Fn−1 o (· · ·o F1) · · · )
where each Fi ⊂ PBn+1 is a free group of rank i ≥ 1.

(b) Deduce that each braid β ∈ PBn+1 can be written uniquely in the form

β = βn+1 · βn · · ·β2

where all the strands of the braid βi are straight vertical except for the i-th strand which
“winds around” the (i− 1)-st strands.

(c) The above decomposition of β is called the combing of the braid β: illustrate this with an
example for n = 4.
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Exercise 3.5. Let Σ be an oriented surface with a set of marked points {x} := {x1, . . . , xn}. An arc in
Σ relative to {x} is an embedded arc a ⊂ int(Σ) joining two distinct points xi, xj and whose interior does
not meet {x}. We choose a closed disk N ⊂ Σ such that a ⊂ int(N) and N ∩{x} = {xi, xj}, and we fix
an orientation-preserving homeomorphism N ∼= D2 ⊂ C mapping the arc a to the segment [−1/2, 1/2].
Then the half-twist along a is the element σa ∈M(Σ, {x}) represented by the self-homeomorphism of
Σ which is the identity outside N and is given on N ∼= D2 by

z 7−→
{
−z if |z| ≤ 1/2,
exp(2iπ(1− |z|)) · z if 1/2 ≤ |z| ≤ 1.

(a) Determine the action of σa on the set {x} and compute σ2
a.

(b) For any two arcs a and b in Σ relative to {x}, show that σaσb = σbσa if a ∩ b = ∅.
(c) Show that σaσbσa = σbσaσb if a and b meet in a single point belonging to {x}.

Exercise 3.6. Let Σ be an oriented surface with marked points {x} := {x1, . . . , xn}, and let β :
{1, . . . , n} × [0, 1]→ Σ× [0, 1] be a geometric braid. Show that there is a homeomorphism

(Σ× [0, 1]) \ β
(
{1, . . . , n} × [0, 1]

) ∼=−→ (Σ \ {x1, . . . , xn})× [0, 1]

from the “exterior” of β to the “exterior” of the trivial braid, which fixes (Σ \ {x1, . . . , xn})× {0}.

Exercise 3.7. Let n ≥ 2 be an integer and set θn :=
(
σ1σ2 · · ·σn−1

)n ∈ Bn.
(a) Draw θ2, θ3, and θ4.
(b) Compute the image of θn under the isomorphism $ : Bn →M(D2, {x}).
(c) Deduce that θn belongs to the center of Bn.
(d) Show that θn has infinite order in Bn.

Exercise 3.8. Consider the group homomorphism

ψ : B3 −→M(S1 × S1), σ1 7−→ τA, σ2 7−→ τB

where A and B are the simple closed curves S1 × {1} and {1} × S1 respectively.

(a) Show that ψ induces an isomorphism B3/〈θ3〉 ' PSL(2;Z) where θ3 := (σ1σ2)3

(b) Using Exercise 3.7, deduce that the center of B3 is a free cyclic group generated by θ3.

Exercise 3.9. Let K be a commutative field and let V be a K-vector space.

(a) A Yang–Baxter operator is a linear automorphism R : V ⊗ V → V ⊗ V which satisfies the
following identity in EndK(V ⊗3):

(R⊗ idV ) ◦ (idV ⊗R) ◦ (R⊗ idV ) = (idV ⊗R) ◦ (R⊗ idV ) ◦ (idV ⊗R).

Show that R induces a homomorphism

ρR : Bn −→ AutK
(
V ⊗n

)
defined for all i ∈ {1, . . . , n− 1} by ρR(σi) := idV

⊗(i−1) ⊗R⊗ idV
⊗(n−i−1).

(b) Let F : V ⊗V → V ⊗V be the “flip” defined by F (v1⊗v2) := v2⊗v1 and let x ∈ K\{0}. Check
that xF is a Yang–Baxter operator and compute the representation ρxF explicitely using the
homomorphism s : Bn → Sn.

(c) Assume that V is a unitary associative K-algebra, and let x, y, z ∈ K \ {0}. Check that the
linear map Rx,y,z : V ⊗ V → V ⊗ V defined by

Rx,y,z(a1 ⊗ a2) := x · a1a2 ⊗ 1 + y · 1⊗ a1a2 − z · a1 ⊗ a2

is a Yang–Baxter operator with inverse Ry−1,x−1,z−1 if x = z or if y = z. (Hint: decompose
Rx,y,z as a sum of two terms Rx,y,z = R′x,y − z · idV⊗V .)

* * *

Solution to Exercise 3.1. Since int(D2) ∼= C, the configuration space F2(D2) is homeomorphic to

F2(C) :=
{

(z, z′) ∈ C2 : z 6= z′
}
.

The latter is homeomorphic to C × C∗ via the map (z, z′) 7→ (z, z′ − z). Since C is contractible and
since C∗ deformation retracts to S1, we deduce that F2(D2) has the homotopy type of S1. Hence

PB2(D2) = π1(F2(D2), x) ' π1(S1, 1) ' Z.

To be more specific, it results from the previous discussion that the map

r : F2(C) −→ S1, (z, z′) 7−→ (z − z′)/|z − z′|
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is a homotopy equivalence. Furthermore, the composition of r with the loop

` : [0, 1] −→ F2(D2), t 7−→ (e2iπtx1, e
2iπtx2)

(where, for concreteness, we assume that x1 := −1/2 and x2 := 1/2 in D2 ⊂ C) gives the loop
r ◦ ` : [0, 1]→ S1, t 7→ e2iπt, which generates π1(S1, 1) ' Z. We deduce that

PB2 = 〈a|∅〉 where a := [`].

To obtain now a presentation of B2, we shall use the short exact sequence

1 −→ PB2−→B2
s−→S2 −→ 1.

The loop m : [0, 1] → C2(D2), t 7→ (eiπtx1, e
iπtx2) defines an element σ := [m] ∈ B2 such that s(σ)

generates S2 ' Z2. Since σ2 = a and (therefore) σaσ−1 = a in B2, we deduce from Lemma 3.6 that

B2 =
〈
a, σ
∣∣a−1σ2, [σ, a]

〉
=
〈
a, σ
∣∣a−1σ2

〉
= 〈σ|∅〉.

N.B. Note that a = a12 and σ = σ1 in the notations of §3.2.

Solution to Exercise 3.2. Since Cn(Σ) is a quotient space of Fn(Σ), it suffices to show that Fn(Σ)
is path-connected. Consider two points x, x′ in Fn(Σ).

Assume that {x} ∩ {x′} = ∅. Using the fact that Σ is connected (and, so, path-connected) by our
convention, we can find for any i ∈ {1, . . . , n} a path γi : [0, 1] → Σ such that γi(0) = xi, γi(1) = x′i
and γi([0, 1]) ∩ γj([0, 1]) = ∅ for any i 6= j. Then the path (γ1, . . . , γn) in Fn(Σ) connects x to x′.

Assume now that {x} ∩ {x′} 6= ∅, and denote by J the subset of the indices i ∈ {1, . . . , n} such
that xi ∈ {x′}. Observe that, for any transposition τ of {1, . . . , n} and for any z ∈ Fn(Σ), there is a
path connecting z to τ · z: if τ(i) = i, the point zi remains fixed along this path and, if τ(i) 6= i, zi is
“exchanged” with zτ(i) inside a small disk D ⊂ int(Σ) such that D ∩ {z} = {zi, zτ(i)}. Therefore, we
can assume that xj = x′j for all j ∈ J . By the previous paragraph, (xi)i∈{1,...,n}\J can be connected
to (x′i)i∈{1,...,n}\J by a path in Fn−|J|(Σ \ {xj |j ∈ J}): we deduce that x can be connected to x′ by a
path in Fn(Σ) along which xj is fixed for any j ∈ J .

Solution to Exercise 3.3. The abelianization of PBn can be deduced from Artin’s presentation.
Indeed, every relation of this presentation is of form

baijb
−1 = aij

for some 1 ≤ i < j ≤ n and b ∈ PBn: hence this relation becomes superflous in the abelianization.
We conclude that PBn/[PBn, PBn] is a free abelian group whose rank is the number of generators in
Artin’s presentation, i.e.

(
n
2

)
= n(n− 1)/2.

Solution to Exercise 3.4. (a) We recall the following general fact: a split short exact sequence

1 // S
i // G

q
// Q

t

ii
// 1

determines a semi-direct product decomposition

G = S′ oQ′

(and vice-versa). Specifically, defining S′ := i(S) E G and Q′ := t(Q) ≤ G, there is for any g ∈ G a
unique (s, q) ∈ S′ ×Q′ such that g = sq. Thus, by Proposition 3.9, we obtain

PBn+1 = Fn o PB′n

where Fn ' π1(D2 \ {x1, . . . , xn}, xn+1) and PB′n ' PBn. Note that Fn is a free group of rank n since
D2 \ {x1, . . . , xn} deformation retracts to a wedge of n circles. An element of Fn is a pure braid on
(n+ 1) strands whose n first strings are straight vertical and whose last string winds around the n first
strings; an element of PB′n is a pure braid on n + 1 strands obtained by “juxtaposing” an arbitrary
pure braid on n strand with the trivial braid on one strand. Next, by applying Proposition 3.9 to the
copy PB′n of PBn in PBn+1, we obtain a semi-direct decomposition

PBn+1 = Fn o
(
Fn−1 o PB′′n−1

)
.

Here an element of Fn−1 is a pure braid on n+ 1 strands whose strings are straight vertical except for
the n-th string which winds arounds the (n− 1) first strings; an element of PB′′n−1 is a pure braid on
n + 1 strands obtained by “juxtaposing” an arbitrary pure braid on (n − 1) strands with the trivial
braid on two strands. Thus, by an induction on n, we get an iterated semi-direct decomposition

PBn+1 = Fn o (Fn−1 o (· · ·o F1) · · · )
(b) This follows from the definition a semi-direct product and the discussion carried in (a).
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(c) Here is the example given by Artin in his foundational paper [Art47] (after a rotation):

The above braid β ∈ PB5 is decomposed as β5β4β3β2 with βi ∈ Fi.

Solution to Exercise 3.5. (a) Let Sa be the self-homeomorphism of Σ representing σa as it is given
by the statement. Clearly Sa exchanges xi and xj since the given self-homeomorphism of D2 exchanges
−1/2 and 1/2, and Sa fixes xk for any k 6∈ {i, j} since xk 6∈ N . So the permutation of {x} induced by
σa is the transposition xi ↔ xj .

The self-homeomorphism S2
a of Σ represents σ2

a. This homeomorphism fixes Σ \ N and it is given
on N ∼= D2 by

z 7−→ −z 7−→ −(−z) = z if |z| ∈ [0, 1/2],

z 7−→ exp(2iπ(1− |z|))z 7−→ exp(2iπ(1− |z|))2z = exp(2iπ(2− 2|z|))z if |z| ∈ [1/2, 1].

We deduce that S2
a|N represents the Dehn twist along the curve {z ∈ C : |z| = 3/4}. Therefore

σ2
a ∈M(Σ, {x}) is the Dehn twist along ∂N .

(b) Let Na ⊂ Σ be a closed disk such that a ⊂ int(Na) and Na ∩ {x} = a ∩ {x}; let also Sa be a
self-homeomorphism of Σ which fixes Σ\Na and represents σa. Let Nb and Sb play similar roles for the
arc b. Since a ∩ b = ∅, we can assume that Na ∩Nb = ∅. Then SaSb is the identity on Σ \ (Na ∪Nb),
it acts the same way as Sa on Na and its acts the same way as Sb on Nb; the same is true for SbSa.
Therefore SaSb = SbSa and it follows that σaσb = σbσa.

(c) Assume that the arc a connects xi to xj and that the arc b connects xj to xk. Let D ⊂ Σ be
a closed disk such that a ∪ b ⊂ int(D) and D ∩ {x} = {xi, xj , xk}. Then the inclusion D ↪→ Σ
induces a group homomorphism M(D, {xi, xj , xk}) → M(Σ, {x}), so that it suffices to prove the
identity σaσbσa = σbσaσb in M(D, {xi, xj , xk}). Choose an orientation-preserving homeomorphism
D ∼= D2 ⊂ C mapping the intervals a and b to [−1/2, 0] and [0, 1/2], respectively. Clearly the group
isomorphism

B3
$−→
'
M(D2, {−1/2, 0, 1/2})−→

'
M(D, {xi, xj , xk})

(where $ is given by Theorem 3.13) sends the generators σ1 and σ2 to σ−1
a and σ−1

b , respectively. Thus
the identity σaσbσa = σbσaσb is a consequence of the braid relation σ1σ2σ1 = σ2σ1σ2.

N.B. The definition of a half-twist corresponds to the construction done in Exercise 1.8 via the iso-
morphism M(Σ, {x}) ∼=Mð(Σ).

Solution to Exercise 3.6. Since the statement is only about the image β
(
{1, . . . , n} × [0, 1]

)
of β,

we can assume that β satisfies the condition

∀t ∈ [0, 1], β
(
{1, . . . , n} × {t}

)
⊂ Σ× {t}.

Hence there is a loop ` : [0, 1] → Cn(Σ) such that β = β(`) in the notation of (3.2). We have seen in
the proof of Theorem 3.13 that the map

Homeo+,∂(Σ) −→ Cn(Σ), f 7−→ f({x})
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is a fibration. Thus, the loop ` : [0, 1] → Cn(Σ) can be “lifted” to Homeo+,∂(Σ): specifically, there is

an isotopy ˜̀ : [0, 1] → Homeo+,∂(Σ) such that ˜̀(0) = idΣ and ˜̀(t)({x}) = `(t) for all t ∈ [0, 1]. Then
the map

h : (Σ \ {x1, . . . , xn})× [0, 1]
∼=−→ (Σ× [0, 1]) \ β

(
{1, . . . , n} × [0, 1]

)
, (y, t) 7−→

(˜̀(t)(y), t
)

is a homeomorphism since, for any t ∈ [0, 1], it maps the level set (Σ \ {x}) × {t} to the level set

(Σ\`(t))×{t} by restriction of the self-homeomorphism ˜̀(t) of Σ. Since ˜̀(0) = idΣ, the homeomorphism
f fixes the “bottom boundary” (Σ \ {x})× {0}.

Solution to Exercise 3.7. (a) Here are θ2, θ3 and θ4:

(b) Let D ⊂ D2 be a closed disk containing the set {x} in its interior, and let δ ⊂ int(D2) \ D be
a simple closed curve parallel to ∂D2. Consider a tubular neighborhood N := N(δ) of δ such that
N ⊂ int(D2) \D. Let T : D2 → D2 be the self-homeomorphism which is the identity outside N and is
given by

S1 × [0, 1] 3 (e2iπθ, r) 7−→
(
e2iπ(θ+r), r

)
∈ S1 × [0, 1]

on N ∼= S1 × [0, 1]. Thus [T ] ∈ M(D2, {x}) is the Dehn twist τδ along δ. We know that T is isotopic
to idD2 relatively to ∂D2 and, by writing down an explicit isotopy, we easily see that

$(θn) = τ−1
δ .

(c) According to (a), it suffices to show that τδ belongs to the center ofM(D2, {x}). Let T be the self-
homeomorphism of D2 representing τδ that we have considered in (a). Any element y ∈ M(D2, {x})
is represented by a self-homeomorphism of D2 which fixes ∂D2: thus y can also be represented by a
self-homeomorphism Y of D2 which fixes a neighborhood of the boundary. Assuming that N = N(δ)
is contained in this neighborhood, we obtain that TY = Y T . It follows that tδy = ytδ.

(d) We have θn ∈ PBn since s(θn) = s(tδ)
−1 = 1. Therefore, it is enough to show that θn has infinite

order in PBn. For this, we observe that the canonical homomorphism PBn → PBn−1 defined by “for-
getting” the last string maps θn to θn−1. (This is a consequence of (a) too.) Thus, by an induction on
n ≥ 2, we obtain that there exists a group homomorphism PBn → PB2 mapping θn to θ2 = σ2

1 = a12.
Since PB2 is the infinite cyclic group generated by a12, we deduce that θn has infinite order in PBn.

N.B. In fact, it is known that the center of Bn is an infinite cyclic group generated by θn for any
n ≥ 3. (See [KT08, Theorem 1.24] for instance; Exercise 3.8 proves this for n = 3.) Besides, the group
Bn is known to be torsion-free. (See [KT08, Corollary 1.29] for instance.)

Solution to Exercise 3.8. (a) Consider the following composition

B3
ψ
//

ρ

22M(S1 × S1)
κ // SL(2;Z) // // PSL(2;Z)

where κ is the isomorphism defined in Proposition 2.4, and recall from the proof of Theorem 2.14 that

PSL(2;Z) =
〈
T ,U

∣∣ T 2
= 1, U

3
= 1
〉

where T and U are the classes of the following matrices:

T :=

(
0 1
−1 0

)
and U :=

(
0 1
−1 −1

)
.

We have

κψ(σ1) =

(
1 1
0 1

)
= −TU, κψ(σ2) =

(
1 0
−1 1

)
= −UT
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so that ρ(σ1) = TU and ρ(σ2) = UT . In particular

ρ
(
(σ1σ2)3

)
= (TU

2
T )3 = TU

2
T

2
U

2
T

2
U

2
T = TU

6
T = T

2
= 1,

which shows that ρ induces a group homomorphism ρ : B3/〈θ3〉 → PSL(2;Z). It is easily verified that
the group homomorphism

PSL(2;Z) −→ B3/〈θ3〉, U 7−→ σ−1
1 σ−1

2 , T 7−→ σ1σ2σ1

is well-defined and is an inverse of ρ by using the above presentation of PSL(2;Z).

(b) The center of PSL(2;Z) is trivial, as can be checked from the fact that PSL(2;Z) ' Z2 ∗ Z3.
Therefore, the center of B3/〈θ3〉 is trivial and it follows that the center Z(B3) of B3 is contained in
〈θ3〉. We deduce from Exercise 3.7.(b) that Z(B3) = 〈θ3〉 and from Exercise 3.7.(c) that Z(B3) ' Z.

Solution to Exercise 3.9. (a) For all i ∈ {1, . . . , n − 1}, we set vi := idV
⊗(i−1) ⊗ R ⊗ idV

⊗(n−i−1).
The braid group Bn is generated by σ1, . . . , σn−1 with relations

(3.9)

{
σiσj = σjσi if |i− j| ≥ 2,
σiσjσi = σjσiσj if |i− j| = 1.

For all i ∈ {1, . . . , n− 2}, we have

vi ◦ vi+1 ◦ vi = idV
⊗(i−1) ⊗ ((R⊗ idV ) ◦ (idV ⊗R) ◦ (R⊗ idV ))⊗ idV

⊗(n−i−2)

= idV
⊗(i−1) ⊗ ((idV ⊗R) ◦ (R⊗ idV ) ◦ (idV ⊗R))⊗ idV

⊗(n−i−2)

= vi+1 ◦ vi ◦ vi+1

and, for all i, j ∈ {1, . . . , n− 1} such that i < j − 1, we have

vivj = idV
⊗(i−1) ⊗R⊗ idV

⊗(j−i−2) ⊗R⊗ idV
⊗(n−j−1) = vjvi.

So, there is a unique group homomorphism ρR : Bn → AutK(V ⊗n) defined by σi 7→ vi.

(b) For all v1, v2, v3 ∈ V , we have

v1 ⊗ v2 ⊗ v3
xF⊗id7−→ x · v2 ⊗ v1 ⊗ v3

id⊗xF7−→ x2 · v2 ⊗ v3 ⊗ v1
xF⊗id7−→ x3 · v3 ⊗ v2 ⊗ v1

v1 ⊗ v2 ⊗ v3
id⊗xF7−→ x · v1 ⊗ v3 ⊗ v2

xF⊗id7−→ x2 · v3 ⊗ v1 ⊗ v2
id⊗xF7−→ x3 · v3 ⊗ v2 ⊗ v1

which shows that xF is a Yang–Baxter operator. The property

∀v1, . . . , vn ∈ V, ρF (β)(v1 ⊗ · · · ⊗ vn) = vs(β−1)(1) ⊗ · · · ⊗ vs(β−1)(n)

is true for β = σi and, so, it is true for any β since Bn is generated by σ1, . . . , σn−1. Moreover, we have
ρxF (σi) = x · ρF (σi). So, we conclude that

∀v1, . . . , vn ∈ V, ρxF (β)(v1 ⊗ · · · ⊗ vn) = x|β| · ρF (β)(v1 ⊗ · · · ⊗ vn)

= x|β| · vs(β−1)(1) ⊗ · · · ⊗ vs(β−1)(n)

for any β ∈ Bn whose length in the words σ1, . . . , σn−1 is denoted by |β| ∈ N. (This length is well-
defined according to the presentation (3.9) of Bn.)

(c) Let us assume, for example, that x = z, the case y = z being similar. An easy computation gives

Rx,y,x ◦Ry−1,x−1,x−1 = idV⊗V = Ry−1,x−1,x−1 ◦Rx,y,x
and shows that Rx,y,x is a linear automorphism. In order to prove that R is a Yang–Baxter operator,
we set R := Rx,y,x and R′ := R+ x · idV⊗V . Thus, we have

(id⊗R) ◦ (R⊗ id) ◦ (id⊗R) = (id⊗R′) ◦ (R′ ⊗ id) ◦ (id⊗R′)− x3 · idA⊗3

−x · (id⊗R′) ◦ (R′ ⊗ id)− x · (R′ ⊗ id) ◦ (id⊗R′)
−x · (id⊗R′)2 + 2x2 · (id⊗R′) + x2 · (R′ ⊗ id)

and

(R⊗ id) ◦ (id⊗R) ◦ (R⊗ id) = (R′ ⊗ id) ◦ (id⊗R′) ◦ (R′ ⊗ id)− x3 · idA⊗3

−x · (R′ ⊗ id) ◦ (id⊗R′)− x · (id⊗R′) ◦ (R′ ⊗ id)

−x · (R′ ⊗ id)2 + 2x2 · (R′ ⊗ id) + x2 · (id⊗R′).
So, we are reduced to show that

(id⊗R′) ◦ (R′ ⊗ id) ◦ (id⊗R′)− x2 · (R′ ⊗ id)− x · (id⊗R′)2

?
= (R′ ⊗ id) ◦ (id⊗R′) ◦ (R′ ⊗ id)− x2 · (id⊗R′)− x · (R′ ⊗ id)2

and this is a straightforward computation.
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4. Formality of the Torelli group

This last section provides an introduction to the “non semi-simple” part of the mapping class group,
namely the Torelli group. The reader may consult Johnson’s survey [Joh83b] or the Chapter 6 of
[FM12] for the classical aspects of the Torelli group, and the survey article [HM12] for the connections
with 3-manifold invariants.

Recall that, with our conventions of §1.1, all surfaces are assumed to be connected, compact and
orientable. In this section, we fix an oriented surface Σ with one or no boundary component: we denote
by n the number of boundary components and by g the genus of Σ. If n = 0, the bordered surface
obtained from Σ by removing a disk is denoted by Σ◦; if n = 1, the closed surface obtained from Σ by
gluing a disk is denoted by Σ+.

4.1. Definition of the Torelli group. In the sequel we denote H := H1(Σ;Z) and H∗ := Hom(H,Z).
(Note that H∗ is canonically isomorphic to H1(Σ;Z) by the universal coefficients theorem.) Let ω :
H × H → Z be the homological intersection form defined in §1.2. We have seen in the solution of
Exercise 1.6 that ω is a symplectic form, in the sense that it is bilinear, skew-symmetric and non-
singular:

(4.1) H
'−→ H∗, x 7−→ ω(x,−)

A group homomorphism ψ : H → H is said to preserve ω if ω(ψ(x), ψ(y)) = ω(x, y) for any x, y ∈ H.

Definition 4.1. The symplectic group of H (equipped with the symplectic form ω) is the group of
automorphisms of H preserving ω. We denote it by Sp(H).

Set ai := [αi] ∈ H1(Σ;Z) and bi := [βi] ∈ H1(Σ;Z) for all i ∈ {1, . . . , g}, where α1, . . . , αg, β1, . . . , βg
are the oriented simple closed curves that are shown below:

(4.2)

α1

β1
β2

α2

βg−1

αg−1 αg
βg

· · ·

	

(The above picture represents the oriented surface Σ if n = 1, and it represents Σ◦ if n = 0.) Then the
matrix of ω in the basis (a, b) := (a1, . . . , ag, b1, . . . , bg) is

Ω :=

(
0 Ig
−Ig 0

)
.

Then, by considering matrix presentations of automorphisms of H, we see that the group Sp(H) is
isomorphic to

Sp(2g;Z) :=
{
M ∈ GL(2g;Z) : M t · Ω ·M = Ω

}
.

The latter is also referred to as the symplectic group or, sometimes, as Siegel’s modular group.

Proposition 4.2. The canonical homomorphism

κ :M(Σ) −→ Sp(2g;Z)

which sends any isotopy class [f ] to the matrix of f∗ : H → H in the basis (a, b), is surjective.

Proof. If n = 0, the inclusion i : Σ◦ ↪→ Σ induces an isomorphism i∗ : H1(Σ◦;Z) → H1(Σ;Z) sending
the basis (a, b) to the basis (a, b); hence we have the following commutative diagram:

(4.3) M(Σ◦)
κ //

��

Sp(2g;Z)

M(Σ)

κ

99

Therefore we can assume that n = 1. Using a prior work by Klingen [Kli61], Birman observes in [Bir71]
that the group Sp(2g;Z) is generated by the 2g × 2g matices

(4.4) Yi :=

(
Ig −Ai
0 Ig

)
, Ui :=

(
Ig 0
Ai Ig

)
, Zj :=

(
Ig Bj
0 Ig

)
indexed by i ∈ {1, . . . , g} and j ∈ {1, . . . , g − 1}, where Ai and Bj are the g × g matrices defined in
terms of the elementary matrices Ekl’s by

Ai := Eii and Bj := −Ejj − Ej+1,j+1 + Ej,j+1 + Ej+1,j .
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Consider now the simple closed curves α1, . . . , αg, β1, . . . , βg, γ1, . . . , γg−1 corresponding to the Lickor-
ish’s generators of the mapping class group:

α1

β1

β2γ1
α2

βg−1
αg−1 αg

βg

· · ·

	

By using Exercise 2.6, or by a simple direct computation, it is easily checked that

(4.5) κ
(
τ−1
αi

)
= Yi, κ

(
τ−1
βi

)
= Ui and κ

(
τ−1
γj

)
= Zj

and we conclude that κ is surjective. �

Proposition 4.2 suggests the following notion.

Definition 4.3. The Torelli group of the surface Σ is the subgroup

I(Σ) := kerκ ⊂M(Σ)

of the mapping class group acting trivially in homology.

Observe that the Torelli group I(Σ) is trivial when Σ is a disk or a sphere, sinceM(Σ) = {1} in those
two cases (by Proposition 2.3 and Exercise 2.1). Besides, it follows from Proposition 2.4 that I(Σ) is
trivial when Σ is a torus. Thus, the “simplest” surface Σ for which I(Σ) 6= {1} is the torus with one
hole Σ1,1: see Exercise 4.3.

Starting from now, we assume that g ≥ 2. Then the Torelli groups in the closed case and in the
bordered case are related as follows.

Proposition 4.4. If Σ is closed, then we have a short exact sequence of groups

1 // π1 (U(Σ))
Push // I(Σ◦)

∪ idD //// I(Σ) // 1

where the maps “Push” and “∪ idD” are as described in Proposition 2.9.

Proof. We have the following commutative diagram:

π1 (U(Σ)) // I(Σ◦)

��

// I(Σ)

��

π1 (U(Σ))

��

Push //M(Σ◦)

κ

��

∪ idD //M(Σ)

κ

��

// 1

1 // 1

��

// Sp(2g;Z)

��

Sp(2g;Z)

��
// 1 // 1 // 1

The third row is obviously exact, the second row is exact by Proposition 2.9, and the dashed arrows
are given by the “snake lemma” which makes sense in the present situation. Since χ(Σ) = 2− 2g < 0,
the “Push” map is injective by Remark 2.10 and we get the desired short exact sequence. �

Remark 4.5. For a surface S with n > 1 boundary components, the Torelli group I(S) is defined in
the following way by Johnson [Joh85a]. Pick one of the boundary component δ0 and choose a system
of oriented simple proper arcs ε1, . . . , εn−1 connecting δ0 to each of the other boundary components
δ1, . . . , δn−1:

· · ·

δ0

δ1 δ2 δn−1

ε1 ε2 εn−1
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Then an element f ∈ M(S) is declared to belong to I(S) if and only if f∗ : H1(S;Z) → H1(S;Z) is
the identity and

∀i ∈ {1, . . . , n− 1}, [f(εi)− εi] = 0 ∈ H1(S;Z).

There are other possible definitions of the Torelli group which are not equivalent to the previous one:
see [Put07] for a detailed analysis of all the possibilities.

4.2. Generation of the Torelli group. We first define two families of elements of the Torelli group,
which will be used to generate I(Σ). Recall that we have assumed that g ≥ 2.

On the one hand, for any simple closed curve ρ in Σ such that [ρ] = 0 ∈ H, we deduce from
Exercise 2.6 that τρ ∈ I(Σ). Such elements of the Torelli group and their inverses are called BSCC
maps (for “Bounding Simple Closed Curves”), since the condition [ρ] = 0 is equivalent to say that
there is a subsurface of Σ with boundary ρ (i.e. ρ is separating.) The genus of τρ is the minimum of
the genus of the subsurfaces of Σ having this property.

On the other hand, for any simple closed curves ρ, δ in Σ such that ρ ∩ δ = ∅ and [ρ] = [δ] 6= 0, we
deduce from Exercise 2.6 that

τρτ
−1
δ ∈ I(Σ).

Such elements of the Torelli group are called BP maps (for “Bounding Pair”), since the condition
[ρ] = [δ] is equivalent to say that there is a subsurface of Σ with boundary ρ ∪ δ. The genus of τρτ

−1
δ

is the mininum of the genus of the subsurfaces of Σ having this property.
The following theorem, due to Johnson [Joh79], is the culmination of several results by others whose

chronicle is outlined below.

Theorem 4.6 (Johnson 1979). The Torelli group I(Σ) has the following generating sets, depending
on the genus g and the number n of boundary components of Σ:

n = 0 n = 1
g = 2 all BSCC maps of genus 1 BSCC maps of genus 1 & all BP maps of genus 1
g ≥ 3 all BP maps of genus 1 all BP maps of genus 1

Outline of the proof. We only consider the closed case (n = 0); the case of a surface with non-empty
boundary (n = 1) can be deduced from this using Proposition 4.4.

The proof of the theorem starts with Birman’s paper [Bir71] which we have already referred to in the
proof of Proposition 4.2. She did much more than deducing from the paper [Kli61] a finite generating
set of Sp(2g;Z): she also carried out the method proposed there by Klingen to find an explicit finite
presentation of Sp(2g;Z). Thus, after some long computations which are only partly reproduced in
[Bir71], she find out a finite set R consisting of 10 types of relations for the system of generators
S := {Yi, Ui, Zj}i,j given at (4.4). The situation can be summed up with the diagram

(4.6) F(X)
k //

τ
����

F(S)/〈〈R〉〉 //

'
��

1

1 // I(Σ) //M(Σ)
κ // Sp(2g;Z) // 1

where X := {αi, βi, γj}i,j is the set of Lickorish’s curves (2.2), the homomorphism τ sends any element
of X to the Dehn twist along the corresponding curve, and the homomorphism k is defined by k(αi) :=
Y −1
i , k(βi) := U−1

i and k(γj) := Z−1
j . This diagram is commutative by (4.5). Let t : F(S)→ F(X) be

the group homomorphism defined by t(Yi) := α−1
i , t(Ui) := β−1

i and t(Zj) := γ−1
j . Then, for any word

r ∈ R, there are two possibilities for the “lift” t(r):

� either τt(r) = 1, i.e. the relation r of the symplectic group “survives” in the mapping class
group: the word t(r) is a relation between the Lickorish’s generators;
� or τt(r) 6= 1, i.e. τ t(r) is a non-trivial element of the Torelli group.

For instance, the word ri := YiUiYiU
−1
i Y −1

i U−1
i is one of the elements of R found by Birman which

corresponds to the relation YiUiYi = UiYiUi in Sp(2g;Z); we have t(ri) := α−1
i β−1

i α−1
i βiαiβi so that

τt(ri) = 1 because of the braid relation

ταiτβiταi = τβiταiτβi ∈M(Σ).

The word s := (Y1U1Y1)4 is another element of R found by Birman; using the braid relation and the
2-chain relation, we have

τt(s−1) := (τα1
τβ1

τα1
)4 = (τα1

τβ1
τα1

)(τβ1
τα1

τβ1
)(τα1

τβ1
τα1

)(τβ1
τα1

τβ1
) = (τα1

τβ1
)6 = τδ1 ∈M(Σ)
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where δ1 is a simple closed curve bounding a subsurface of genus 1: thus we get, this time, a non-trivial
element of I(Σ). As a third and last example, consider the word u := (Y1U1Z1U2Y2)6 which is another
element of R found by Birman; by the 5-chain relation, we have

τt(u−1) = (τα2
τβ2

τγ1
τβ1

τα1
)6 = τδ2 ∈M(Σ)

where δ2 is a simple closed curve bounding a genus 2 subsurface of Σ: thus we get another non-trivial
element of I(Σ) if g ≥ 3. It follows from diagram (4.6) that I(Σ) is the subgroup of M(Σ) normally
generated by the finite set

B :=
{
τt(r) | r ∈ R

}
\ {1}

which Birman fully computes in [Bir71]. The set B consists of the single element τt(s) = τt
(
(Y1U1Y1)4

)
if g = 2, and it consists of four elements including τt(s) and τt(u) = τt

(
(Y1U1Z1U2Y2)6

)
if g ≥ 3.

The next step has been carried out by Powell. He showed that, for g ≥ 3, any element of B is either
a BSCC map of genus ≤ 2 or is a product of BP maps of genus 1 [Pow78]. (We have checked this in
the previous paragraph for only two elements of B over four.) Since the conjugate of any BSCC map
(respectively, any BP map) is a BSCC map (respectively, a BP map) of the same genus, it follows that
I(Σ) is generated by BSCC maps of genus ≤ 2 and BP maps of genus 1 for g ≥ 3. The same argument
shows that I(Σ) is generated by BSCC maps of genus 1 if g = 2.

Johnson gave the final touch to the theorem in genus g ≥ 3. Using the lantern relation, he showed
in [Joh79] that any BSCC map of genus 2 is a product of BSCC maps of genus 1 and BP maps of
genus 1, and that any BSCC map of genus 1 is itself a product of BP maps of genus 1. It follows that
I(Σ) for g ≥ 3 is generated by BP maps of genus 1. �

Remark 4.7. Putman proved without appealing to Powell’s result [Pow78] that I(Σ) is generated
by BP maps and BSCC maps: see [Put07, Theorem 1.3]. By adjoining to his result the arguments
of Johnson in [Joh79], one gets another proof of Theorem 4.6 which is logically independent of those
lengthy computations that are only outlined in [Bir71].

Remark 4.8. It follows from Theorem 4.6 and Exercise 4.5 that, as a normal subgroup ofM(Σ), the
Torelli group I(Σ) is generated by only one or two elements:

n = 0 n = 1
g = 2 one BSCC map of genus 1 one BSCC map of genus 1 & one BP map of genus 1
g ≥ 3 one BP map of genus 1 one BP map of genus 1

Theorem 4.6 does not consider the problem of the finite generation/presentation of the Torelli group.
We sum up below what is known about this subject.

Theorem 4.9 (Johnson 1983). In genus g ≥ 3, the group I(Σ) is generated by a finite number of
BP maps.

About the proof. See [Joh83a] for the original proof and [Joh83b] for a quick outline. Note that the BP
maps of the finite generating set provided by Johnson may have genus greater than one. �

The generation of the Torelli group in the case g = 2 is drastically different than in the case g ≥ 3.

Theorem 4.10 (McCullough–Miller 1986). In genus g = 2, the group I(Σ) is infinitely generated.

Outline of the proof. By Proposition 4.4, it is enough to deal with the closed case (n = 0). The proof

given in [MM86] goes as follows. Let Σ̂ be the regular covering of Σ corresponding to the kernel of the
group homomorphism

p : π1(Σ, ?) −→ 〈s, t | [s, t] = 1〉 ' Z2

defined by p(α1) := 1, p(β1) := 1, p(α2) := s and p(β2) := t. Here (α1, β1, α2, β2) is the system
of oriented simple closed curves shown at (4.2) and based at a point ? ∈ Σ. The action of the

automorphism group 〈s, t | [s, t] = 1〉 of the covering Σ̂ → Σ induces a structure of R-module on

H1(Σ̂;Z) where R := Z[s±1, t±1]. Thus, there is a group homomorphism

(4.7) I(Σ) −→ AutR
(
H1(Σ̂;Z)

)
, [f ] 7−→ f̂∗

where the representative homeomorphism f is assumed to fix ? and f̂ : Σ̂ → Σ̂ denotes the unique

lift of f fixing a preferred lift ?̂ of ?. Now, it turns out that H1(Σ̂;Z) is a free R-module with basis(
[α̂1], [β̂1]

)
where α̂1, β̂1 are lifts of α1, β1 respectively. Then, by considering matrix presentations in

this basis, one obtains a group homomorphism

κR : I(Σ) −→ GL(2;R)
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which McCullough and Miller explicitly compute on Dehn twists. Thus, using Powell’s result that
I(Σ) is generated by BSCC maps of genus 1, they deduce that κR takes values in the special linear
group SL(2;R). This group has a certain decomposition as an amalgamated free product [BM78].
Using this decomposition, McCullough and Miller are able to show that the image of κR is not finitely
generated. �

Concerning presentations of the Torelli group, the following is known. Mess proved that I(Σ) is
a free group (of infinite rank) for g = 2 and n = 0 [Mes92]. Putman also obtained in [Put09] some
interesting infinite presentations of I(Σ) for any g ≥ 2 and n ∈ {0, 1}, whose generators are given by
BSCC maps, BP maps and commutators of the kind considered in Exercise 4.4. But it is not known
whether the Torelli group is finitely presented in genus g ≥ 3.

4.3. The Johnson homomorphisms. Starting from now, we assume that Σ is an oriented surface
of genus g ≥ 2 with a single boundary component. All the results and constructions below exist in the
closed case too; but their statements are often more technical, and the proofs in the closed case are
derived from the bordered case (with the notable exception of Hain’s results in §4.5). Therefore we
have preferred to omit the closed case in what follows.

Let π := π1(Σ, ?) be the fundamental group of Σ based at a point ? ∈ ∂Σ. The homotopy class
of the boundary curve is denoted by ζ := [∂Σ] ∈ π. The following shows that mapping class groups
naturally embed into automorphism groups of free groups.

Theorem 4.11 (Dehn, Nielsen & Baer 20’s). The group homomorphism

ρ :M(Σ) −→ Aut(π), [f ] 7−→ f]

is injective and its image consists of all ψ ∈ Aut(π) satisfying ψ(ζ) = ζ.

About the proof. The fact that ρ is a group homomorphism follows from the functoriality of π1(−). By
definition of M(Σ), we obviously have

ρ
(
M(Σ)

)
⊂ {ψ ∈ Aut(π) : ψ(ζ) = ζ}

The proof of the converse inclusion, which is much more involved, can be found in [ZVC80] for instance.
To prove the injectivity, assume that f ∈M(Σ) is such that f] = idπ. Since Σ deformation retracts

to a bouquet of circles, it is a K(π, 1)-space. Thus, for any pointed topological space (X,x), the map

(4.8)

{
continuous maps g : (X,x)→ (Σ, ?)

}
homotopy

−→ Hom
(
π1(X,x), π

)
, [g] 7−→ g]

is a bijection. Taking (X,x) = (Σ, ?), we deduce that there is a homotopy between f and idΣ (which
is not necessarily relative to the boundary). Since homotopy coincides with isotopy in dimension 2, we
deduce from (2.7) that [f ] = τkγ ∈ M(Σ) for some k ∈ Z and where γ is a simple closed curve parallel

to ∂Σ. It is easily checked that (τγ)] is the conjugation by ζ, so that (τγ)l] is non trivial for any l 6= 0.

We deduce that k = 0 and that [f ] = 1 ∈M(Σ). �

The Dehn–Nielsen–Baer representation ρ can be “approximated” step-by-step by considering a suc-
cession of nilpotent quotients of the group π. Specifically, we consider the lower central series of π

π = Γ1π ⊃ Γ2π ⊃ · · · ⊃ Γkπ ⊃ Γk+1π ⊃ · · ·
defined inductively by Γk+1π :=

[
π,Γkπ

]
for all k ≥ 1. Since Γk+1π is a characteristic subgroup of π,

there is a canonical homomorphism Aut(π)→ Aut(π/Γk+1π) and we define a representation ρk of the
mapping class group by the following composition:

M(Σ)
ρ
//

ρk

55
Aut(π) // Aut(π/Γk+1π)

Defining JkM(Σ) := ker ρk for every k ≥ 0, we obtain a sequence of subgroups

M(Σ) = J0M(Σ) ⊃ J1M(Σ) ⊃ · · · ⊃ JkM(Σ) ⊃ Jk+1M(Σ) ⊃ · · ·
which is called the Johnson filtration of the mapping class group M(Σ). Note that J1M(Σ) = I(Σ)
and, for any k ≥ 1, we will sometimes write JkI(Σ) instead of JkM(Σ). We now give two important
properties of the Johnson filtration.

Lemma 4.12. We have

(i)
[
JkM(Σ), JlM(Σ)

]
⊂ Jk+lM(Σ) for any integers k, l ≥ 0,

(ii)
⋂
k≥0 JkM(Σ) = {1}.
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Proof. We refer to [Mor91, Corollary 3.3] for the proof of (i). To prove (ii), consider an f ∈ M(Σ)
such that f ∈ JkM(Σ) for all k ≥ 0. Let x ∈ π. Then, by assumption,

∀k ≥ 1, f](x)x−1 ∈ Γkπ.

Since π is a free group, it is residually nilpotent i.e.
⋂
k≥1 Γkπ = {1}. It follows that f](x) = x for all

x ∈ π. We deduce from Theorem 4.11 that f = 1 ∈M(Σ). �

As an application of Lemma 4.12, we obtain the following.

Proposition 4.13. The Torelli group I(Σ) is residually nilpotent.

Proof. Using Lemma 4.12.(i), we obtain by an induction on k ≥ 1 that

(4.9) ΓkI(Σ) ⊂ JkM(Σ).

Then it follows from Lemma 4.12.(ii) that
⋂
k≥1 ΓkI(Σ) ⊂ {1}. �

Proposition 4.13 shows that it is important to compute the graded object associated to the lower
central series of I(Σ), namely

GrΓ I(Σ) :=
⊕
k≥1

ΓkI(Σ)

Γk+1I(Σ)
.

As a general fact, GrΓ I(Σ) is a graded Lie algebra.8 The conjugation action ofM(Σ) on I(Σ) induces

an action of the symplectic group Sp(H) on GrΓ I(Σ):

∀M ∈ Sp(H), ∀f ∈ ΓkI(Σ), M ·[f ] := [mfm−1] ∈ ΓkI(Σ)

Γk+1I(Σ)
, where m ∈M(Σ) is such that m∗ = M

Clearly this action preserves the graded Lie algebra structure of GrΓ I(Σ).

The degree one part of GrΓ I(Σ), i.e. the abelianisation of I(Σ), will be seen in §4.4 while its

rationalization
(

GrΓ I(Σ)
)
⊗Q will be considered in §4.5. Before that, observe that the inclusion (4.9)

induces a canonical map

(4.10) GrΓ I(Σ) −→ GrJ I(Σ) :=
⊕
k≥1

JkI(Σ)

Jk+1I(Σ)
.

Furthermore, using Lemma 4.12.(i), we can also give to GrJ I(Σ) the structure of a graded Lie algebra

with Sp(H)-action as we did for GrΓ I(Σ): clearly, (4.10) is a homomorphism of graded Lie algebras
and it is Sp(H)-equivariant.

Remark 4.14. B Although it is induced by an injection of filtered groups, namely the inclusion (4.9),
the graded homomorphism (4.10) is not injective. Indeed, it is not injective in degree 1 as will follow
from the results of §4.4.

Thus, we are now interested in the Lie algebra GrJ I(Σ). We will show that it embeds in a Lie
algebra of derivations. Let H := H1(Σ;Z) and let L(H) be the Lie algebra freely generated by H:

L(H) =
⊕
k≥1

Lk(H) where L1(H) = H, L2(H) = Λ2H, . . .

The natural action of Sp(H) on H extends to an action of Sp(H) on the graded Lie algebra L(H): for in-
stance, for anyM ∈ Sp(H) and for all h1, h2, h3 ∈ H, we haveM ·[h1, [h2, h3]] = [M(h1), [M(h2),M(h3)]].
Recall that a derivation of L(H) is a Z-linear map δ : L(H)→ L(H) such that

∀x, y ∈ L(H), δ([x, y]) = [δ(x), y] + [x, δ(y)];

a derivation δ is positive if it maps H = L1(H) to L≥2(H); a derivation δ is symplectic if δ(ω′) = 0
where ω′ ∈ Λ2H is the bivector dual to the intersection form ω : H × H → Z (see Exercise 4.2).
The set Der

(
L(H)

)
of derivations of L(H) equipped with the Lie bracket [δ1, δ2] := δ1 ◦ δ2 − δ2 ◦ δ1

is a Lie algebra, and its subset Der+
ω

(
L(H)

)
consisting of positive symplectic derivations is a Lie

subalgebra. Note that the canonical action of Sp(H) on L(H) induces an Sp(H)-action on the Lie
algebra Der

(
L(H)

)
:

∀M ∈ Sp(H), ∀δ ∈ Der
(
L(H)

)
, M · δ :=

(
M · (−)

)
◦ δ ◦

(
M−1 · (−)

)
,

which, by Exercise 4.2.(a), leaves Der+
ω

(
L(H)

)
⊂ Der

(
L(H)

)
globally invariant. Finally, Der+

ω

(
L(H)

)
is a graded Lie algebra whose homogeneous elements of degree k > 0 are the derivations mapping H
to Lk+1(H).

8 If no ring of coefficients is specified, a “Lie algebra” g will refer here to a Lie algebra over Z. It is said to be “graded”
if g = ⊕k>0gk is graded as a Z-module and [gk, gl] ⊂ gk+l for any k, l > 0.
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Theorem 4.15 (Johnson 80’s, Morita 90’s). There is a canonical graded Lie algebra homomorphism

τ : GrJ I(Σ) −→ Der+
ω

(
L(H)

)
which is injective and Sp(H)-equivariant.

Sketch of proof. We first define, for any integer k ≥ 1, a group homomorphism

(4.11) τk : JkI(Σ) −→ Hom
(
H,Lk+1(H)

)
such that ker τk = Jk+1I(Σ).

Let f ∈ JkI(Σ). For all x ∈ π, we set

τk(f)([x]) := ρk+1(f)([x]) · [x]−1 ∈ Γk+1π

Γk+2π

where the x on the left-hand side represents an element of π/Γ2π ' H and the x on the right-
hand side represents an element of π/Γk+1π. Using the commutator identities, it can be checked
that the right-hand side only depends on the class of x modulo Γ2π and that the resulting map
H → Γk+1π/Γk+2π is actually a group homomorphism. We now check that the resulting map τk :
JkI(Σ)→ Hom

(
H,Γk+1π/Γk+2π

)
is a group homomorphism (where Hom

(
H,Γk+1π/Γk+2π

)
has the

operation induced by the commutative multiplication in Γk+1π/Γk+2π): let f, h ∈ JkI(Σ), then

∀x ∈ π, τk(fh)([x]) = ρk+1(fh)([x]) · [x]−1

=
(
ρk+1(f) ◦ ρk+1(h)

)
([x]) · [x]−1

= ρk+1(f)
(
ρk+1(h)([x])

)
· [x]−1

= ρk+1(f)
(
τk(h)([x]) · [x]

)
· [x]−1

= ρk+1(f)
(
τk(h)([x])

)︸ ︷︷ ︸
=τk(h)([x])

· ρk+1(f)
(
[x]
)
· [x]−1︸ ︷︷ ︸

=τk(f)([x])

= τk(f)([x]) · τk(h)([x])

where, in the last identity, we use the fact that ρk+1(f) ∈ Aut(π/Γk+2π) is the identity on Γk+1π/Γk+2π.

Since π is a free group, there is a canonical isomorphism of graded Lie algebras between GrΓ π and
L(H): this is the unique isomorphism which is given in degree one by the Hurewicz isomorphism
between π/Γ2π and H. In particular, we may identify Γk+1π/Γk+2π with Lk+1(H).

Therefore, we have managed to construct a homomorphism τk as in (4.11) for any integer k ≥ 1.
Taking the direct sum over all k ≥ 1, we obtain an injective group homomorphism

τ : GrJ I(Σ) −→ Hom(H,L≥2H).

Since the Lie algebra L(H) is generated by its degree one part, any derivation of L(H) is determined
by its restriction to H. Therefore, we can identify the abelian groups Der+(L(H)) and Hom(H,L≥2H)
to obtain an injective group homomorphism

τ : GrJ I(Σ) −→ Der+
(
L(H)

)
.

We now check that this map τ takes values in the Lie subalgebra of symplectic derivations. Let
(α1, β1, . . . , αg, βg) be a system of simple closed curves as shown in (4.2), and consider their homology
classes ai := [αi], bi := [βi]. Then (a1, b1, . . . , ag, bg) is a symplectic basis of H so that

ω′ =

g∑
i=1

ai ∧ bi.

Let f ∈ JkI(Σ) and set δ := τk(f) ∈ Der+(L(H)). We must show that

(4.12)

g∑
i=1

[
δ(ai), bi

]
+

g∑
i=1

[
a, δ(bi)

]
= 0.

By connecting the curves αi, βi’s to ? by some arcs, we can promote them to loops based at ? which
we denote by the same letters. Then, for an appropriate choice of those arcs, the homotopy class of
the boundary curve decomposes as

ζ =
[
αg, β

−1
g

]
· · ·
[
α1, β

−1
1

]
∈ Γ2π.

Then (4.12) can be deduced from the fact that f(ζ) = ζ using commutators identities.
We now verify that the map τ is Sp(H)-equivariant. Let m ∈ M(Σ) and f ∈ JkI(Σ). For any

x ∈ π, we have

τk(mfm−1)([x]) = ρk+1(mfm−1)([x]) · [x]−1

= ρk+1(mf)
(
[m−1

] (x)]
)
· [x]−1
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= ρk+1(m)
(
ρk+1(f)([m−1

] (x)]) · ρk+1(m−1)([x]−1)
)

= ρk+1(m)
(
ρk+1(f)([m−1

] (x)]) · [m−1
] (x)]−1

)
= ρk+1(m)

(
τk(f)([m−1

] (x)])
)
.

This shows that τk(mfm−1) =
(
m∗ · (−)

)
◦ τk(f) ◦

(
m−1
∗ · (−)

)
= m∗ · τk(f) if τk(f) is regarded as a

derivation of L(H), which proves the Sp(H)-equivariance.

Finally, the fact that τ : GrJ I(Σ) → Der+
ω

(
L(H)

)
preserves the Lie brackets is proved in [Mor91,

Propositions 3.4 & 3.5] to which we refer. �

The map τk : JkI(Σ)→ Hom(H,Lk+1(H)) introduced in the proof of Theorem 4.15 is called the k-
th Johnson homomorphism. It has been introduced by Johnson for k = 1 in [Joh80a] and for arbitrary
k ≥ 1 in [Joh83b]. The general properties of the Johnson homomorphisms have been studied by Morita
in [Mor91, Mor93].

The first Johnson homomorphism τ1 : I(Σ)→ Hom(H,L2(H)) deserves a special attention. There
is a canonical isomorphism H → H∗ defined by h 7→ ω(h,−), so that we can identify the target of τ1
with the Z-module

Hom(H,L2(H)) ' H∗ ⊗ L2(H) ' H ⊗ L2(H).

Furthermore, there is a group homomorphism Λ3(H)→ H ⊗ L2(H) defined by

h1 ∧ h2 ∧ h3 7−→ h1 ⊗ [h2, h3] + h3 ⊗ [h1, h2] + h2 ⊗ [h3, h1].

It is injective since it can be inserted into the following commutative diagram

Λ3H //
3×

//

��

Λ3HQ

H ⊗ L2(H) // HQ ⊗ L2(HQ)

OO

where HQ := H⊗Q and the map HQ⊗L2(HQ)→ Λ3HQ is defined by u⊗[v, w] 7−→ u∧v∧w. Therefore,
we can regard Λ3H as a submodule of H ⊗L2(H). It can be verified by a direct computation that, for
any BP map τγτ

−1
δ of genus 1,

(4.13) τ1
(
τγτ
−1
δ

)
= ±[γ] ∧ [ρ′] ∧ [ρ′′] ∈ Λ3H

where ρ′ and ρ′′ are simple oriented closed curves on the subsurface of genus 1 delimited by δ ∪ γ and
they are such that i(ρ′, ρ′′) = 1: see [Joh80a, Lemma 4.B]. Furthermore, τ1 vanishes on any BSCC
map: see Exercise 4.9. It follows from Theorem 4.6 that τ1 takes values in Λ3H. Thus, to sum up our
discussion, the first Johnson homomorphism is an Sp(H)-equivariant homomorphism

τ1 : I(Σ) −→ Λ3H.

The formula (4.13) can also be used to show that τ1 is surjective: see [Joh80a, Theorem 1].

4.4. The abelianization of the Torelli group. In contrast with the mapping class group (see
Corollary 2.16), the Torelli group has an interesting abelianization which we now survey. As in the
previous subsection, we consider an oriented surface Σ of genus g ≥ 2 with a single boundary component
and we set H := H1(Σ;Z). To describe the abelianization of I(Σ), we will need the set

Ω :=
{
H ⊗ Z2

q−→ Z2 : ∀x, y ∈ H ⊗ Z2, q(x+ y)− q(x)− q(y) = ω(x, y)
}

where ω : (H ⊗ Z2) × (H ⊗ Z2) → Z2 is the symmetric Z2-bilinear form obtained by taking the mod
2 reduction of the intersection form ω : H ×H → Z. In other words, Ω is the set of quadratic forms
whose polar form is the mod 2 reduction of ω.

Lemma 4.16. The set Ω is an affine space over the Z2-vector space H ⊗Z2, the action being given by

(4.14) ∀x ∈ H ⊗ Z2, ∀q ∈ Ω, q + ~x := q + ω(x,−).

Proof. Since ω : H ×H → Z is non-singular, its mod 2 reduction is non-singular too, i.e. the map

(4.15) H ⊗ Z2 −→ HomZ2(H ⊗ Z2,Z2), x 7−→ ω(x,−)

is an isomorphism. The action (4.14) is transitive because, for any q, q′ ∈ Ω, the map q−q′ : H⊗Z2 → Z2

is a homomorphism and the surjectivity of (4.15) implies that there is an x ∈ H ⊗ Z2 such that
ω(x,−) = q− q′. The action (4.14) is free because, for any q ∈ Ω and x ∈ H ⊗Z2 such that q+ ~x = q,
we have ω(x,−) = 0 and the injectivity of (4.15) implies that x = 0. �
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Consequently, we can consider affine functions on Ω and, furthermore, we can consider the space

Cubic(Ω,Z2) :=
{

Ω
c−→ Z2 : c is a sum of triple products of affine functions

}
of cubic functions on Ω. The (formal) third differential of a c ∈ Cubic(Ω,Z2) is the map

d3c : (H ⊗ Z2)× (H ⊗ Z2)× (H ⊗ Z2) −→ Z2

defined by

d3c(x, y, z) := c(q + ~x+ ~y + ~z) +
(
c(q + ~y + ~z) + c(q + ~x+ ~z) + c(q + ~x+ ~y)

)
+
(
c(q + ~x) + c(q + ~y) + c(q + ~z)

)
+ c(q)

where q ∈ Ω is an arbitrary point. It can be checked that the map d3c is trilinear and does not depend
on the choice of q (because the function c : Ω→ Z2 is cubic) and that d3c is alternate (because we are
here working in characteristic 2). Therefore the map d3c defines an element

d3c ∈ HomZ2

(
Λ3(H ⊗ Z2),Z2

)
' Λ3(H ⊗ Z2).

Here the isomorphism Λ3(H⊗Z2)→ HomZ2

(
Λ3(H⊗Z2),Z2

)
is induced by the non-singular Z2-bilinear

form Λ3(H ⊗ Z2)× Λ3(H ⊗ Z2)→ Z2 defined by

(
v1 ∧ v2 ∧ v3, w1 ∧ w2 ∧ w3

)
7−→ det

ω(v1, w1) ω(v1, w2) ω(v1, w3)
ω(v2, w1) ω(v2, w2) ω(v2, w3)
ω(v3, w1) ω(v3, w2) ω(v3, w3)

 ∈ Z2.

Theorem 4.17 (Johnson 1985). There is a group homomorphism β : I(Σ)→ Cubic(Ω,Z2) such that
the following diagram is commutative:

(4.16) I(Σ)
β
//

τ1

��

Cubic(Ω,Z2)

d3

��

Λ3H
−⊗Z2

// Λ3H ⊗ Z2

For g ≥ 3, this diagram induces an isomorphism

(τ1, β) :
I(Σ)

[I(Σ), I(Σ)]

'−→ Λ3H ×Λ3H⊗Z2
Cubic(Ω,Z2)

between the abelianization of the Torelli group and the corresponding fibered product.

It follows that, for g ≥ 3, the abelianization of the Torelli group is (non-canonically) isomorphic to

Λ3H ⊕
2⊕
i=0

Λi(H ⊗ Z2)

since the space of quadratic functions on Ω is (non-canonically) isomorphic to
⊕2

i=0 Λi(H ⊗Z2). Since

rank Λ3H =
(

2g
3

)
and dimZ2

Λi(H ⊗ Z2) =
(

2g
i

)
, we deduce that the group I(Σ) can not be generated

by less than (
2g

3

)
+

(
2g

2

)
+

(
2g

1

)
+

(
2g

0

)
=

4

3
g3 +

5

3
g + 1

elements: this is in sharp contrast with the mapping class group for which we can find a system of
generators whose cardinality is linear in g. Note that the second part of Theorem 4.17 does not hold
in genus g = 2 since I(Σ) is not finitely generated in this case (Theorem 4.10).

About the proof of Theorem 4.17. The theorem is proved by Johnson in [Joh85c] by combining all his
prior works on the Torelli group with a bit of 3-dimensional topology. We only mention here, in a very
rough way, how 3-manifolds and their topological invariants arise in Johnson’s proof.

We can associate to any f ∈ M(Σ) a topological 3-manifold which is closed (i.e. compact without
boundary), connected and oriented: this is the mapping torus of f defined by

Tf :=
(Σ× [−1, 1]

∼

)
∪∂
(
S1 ×D2

)
.

Here the equivalence relation ∼ identifies (f(x), 1) with (x,−1) for all x ∈ Σ, and the “solid torus”
S1 × D2 is glued as follows along its boundary: the meridian {1} × ∂D2 is glued along the circle
({?} × [−1, 1])/∼ while the longitude S1 × {1} is glued along ∂Σ × {1}. If now f ∈ I(Σ), then the
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inclusion ι : Σ ↪→ Tf defined by x 7→ (x, 1) induces an isomorphism between H = H1(Σ;Z) and
H1(Tf ;Z). The intersection of closed immersed surfaces in Tf defines a trilinear alternate form

H2(Tf ;Z)×H2(Tf ;Z)×H2(Tf ;Z) −→ Z
(in a way similar to the definition of the intersection form of an oriented surface in §1.2): thus we have
assigned to any f ∈ I(Σ) an element of

Hom
(
Λ3H2(Tf ;Z),Z

)
' Λ3 Hom

(
H2(Tf ;Z),Z) ' Λ3H2(Tf ;Z) ' Λ3H1(Tf ;Z) ' Λ3H

where the second isomorphism is given by the universal coefficients theorem and the third isomorphism
is by Poincaré duality. Therefore we have obtained a map I(Σ) → Λ3H, and this map turns out to
coincide with the first Johnson homomorphism τ1 [Joh83b].

We now explain the new homomorphism β : I(Σ)→ Cubic(Ω,Z2) that appears in the statement of
the theorem. This is actually a “compilation” of many homomorphisms which have been first introduced
by Birman & Craggs [BC78] before being studied in great detail by Johnson [Joh80b]. Thus the map
β is called the Birman–Craggs homomorphism and, similarly to the first Johnson homomorphism, it
can be described using the “mapping torus” construction [Tur83]. Specifically, for any f ∈ I(Σ), the
cubic function β(f) : Ω → Z2 is the map which assigns to any spin structure σ on Tf the Rochlin
invariant of the spin 3-manifold (Tf , σ). This definition of β would need several explanations. Let us
only clarify a few points: (i) when it is not empty, the set Spin(M) of spin structures on an oriented
manifold M constitutes an affine space over the Z2-vector space H1(M ;Z2); (ii) the Rochlin invariant
of a closed spin 3-manifold is defined as an element of Z16 (using 4-dimensional topology) but, when
the first homology group with integer coefficients of the manifold is torsion-free, the Rochlin invariant
belongs to the subset {0, 8} ⊂ Z16 so that it defines an element of Z2; (iii) the inclusion ι : Σ ↪→ Tf
induces an affine isomorphism Spin(Tf ) → Spin(Σ); (iv) there is an affine canonical correspondence
between Spin(Σ) and the space of quadratic forms Ω [Joh80c].

The facts that the Rochlin function Spin(M) → Z16 is cubic and that its third differential is given
by the trilinear intersection form on H2(M ;Z) is true for any closed oriented 3-manifold M [Tur83].
In particular, we get the commutative diagram (4.16). But it then remains to prove the second part
of the theorem which, of course, is the most difficult one. �

4.5. The Malcev Lie algebra of the Torelli group. We conclude these lecture notes by mentioning
Hain’s results on the formality of the Torelli group. We first need some general definitions about the
notion of “formality”.

Recall that the Malcev Lie algebra of a discrete group G is a filtered Lie Q-algebra M(G), which is
usually defined as the primitive part of the I-adic completion of the group Q-algebra of G:

M(G) := Prim
(

lim←−
k

Q[G]/Ik
)

where I is the kernel of the augmentation Q[G]→ Q.

The graded Lie Q-algebra GrM(G) associated to M(G) is isomorphic to (GrΓG) ⊗ Q in a canonical
way and, of course, the latter is generated by its degree 1 part. Hence there is always a canonical
graded Lie Q-algebra homomorphism

L
(

G
[G,G] ⊗Q

)
// // (GrΓG)⊗Q ' GrM(G)

which is surjective and whose kernel is denoted by R(G) =
⊕

k≥2 Rk(G).

Definition 4.18. A finitely generated group G is 1-formal if M(G) is isomorphic to the degree-

completion of GrM(G) ' (GrΓG)⊗Q and if the ideal R(G) is generated by R2(G).

Thus, for a 1-formal group G, all the information captured by the Malcev Lie algebra is contained
in the graded Lie Q-algebra (GrΓG) ⊗ Q and the latter has a finite presentation with only quadratic
relations. Examples of 1-formal groups include finitely-generated free groups, fundamental groups of
closed surfaces and pure braid groups.

As in the previous subsections, we now consider an oriented surface Σ of genus g ≥ 2 with a single
boundary component. The following result, whose proof is out of reach to us in these notes, has been
proved in [Hai97].

Theorem 4.19 (Hain 1997). The Torelli group I(Σ) is 1-formal if g ≥ 6.

In genus g ∈ {3, 4, 5}, Hain has also proved that M(I(Σ)) is isomorphic to the degree-completion of
GrM(I(Σ)) and that R(I(Σ)) is generated by R2(I(Σ))⊕R3(I(Σ)). Recall that I(Σ) is not finitely
generated if g = 2 (Theorem 4.10) so that Definition 4.18 does not apply in this case. In the sequel,
we will mostly consider the case g ≥ 6.
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In order to get explicit quadratic presentations of GrM(I(Σ)), one still needs to compute R2(I(Σ)).
By definition, R2(I(Σ)) is a subspace of

L2

(
I(Σ)

[I(Σ), I(Σ)]
⊗Q

)
and, according to Theorem 4.17, we have an isomorphism

I(Σ)
[I(Σ),I(Σ)] ⊗Q '

τ1⊗Q // Λ3HQ where HQ := H ⊗Q.

Therefore we can regard R2(I(Σ)) as a subspace of L2(Λ3HQ) and, since τ1 is Sp(H)-equivariant,
R2(I(Σ)) is actually an Sp(HQ)-submodule of L2(Λ3HQ). The following has been firstly proved in the
analogous case of a closed surface by Hain [Hai97], and it has been subsequently extended to the case
of a bordered surface by Habegger and Sorger (unpublished); the proof needs the representation theory
of the symplectic group Sp(HQ) ' Sp(2g;Q).

Proposition 4.20 (Hain 1997, Habegger–Sorger 2000). If g ≥ 6, then the Sp(HQ)-module R2(I(Σ))
is spanned by the following elements r1, r2 of L2(Λ3HQ):{

r1 := [α1 ∧ α2 ∧ β2, α3 ∧ α4 ∧ β4]
r2 := [α1 ∧ α2 ∧ β2, αg ∧ ω′]

where (α1, β1, . . . , αg, βg) denotes a symplectic basis of H and ω′ :=
∑g
i=1 αi ∧ βi.

Thus, we get the following quadratic presentation of the Malcev Lie algebra of the Torelli group:

(4.17) GrM(I(Σ)) ' L(Λ3HQ)〈
〈r1, r2〉Sp(HQ)

〉
ideal

(for g ≥ 6)

The next step would be to deduce from the presentation (4.17) a diagrammatic description of
GrM(I(Σ)). One expects something similar to the description of GrM(PBn) in terms of “chord
diagrams”. On this purpose, we introduce the following notion: a Jacobi diagram is a finite graph
whose vertices have valency 1 (external vertices) or 3 (internal vertices). Each internal vertex is
oriented, in the sense that its incident edges are cyclically ordered. A Jacobi diagram is colored by
HQ if a map from the set of its external vertices to the vector space HQ is specified. A strut is a
Jacobi diagram with only two external vertices and no internal vertex. Examples of connected Jacobi
diagrams (the strut, the Y graph, the H graph, the Phi graph and the Theta graph) are shown below:

(Here and in the sequel, the vertex orientations are given by the counter-clockwise orientation.) We
consider the following Q-vector space:

A(HQ) :=

Q ·
{

Jacobi diagrams without strut component
and with external vertices colored by HQ

}
AS, IHX, multilinearity

.

The “AS” and “IHX” relations are diagrammatic analogues of the antisymmetry and Jacobi identities
in Lie algebras:

AS IHX

= − − + = 0

The “multilinearity” relation states that a Jacobi diagram D with one external vertex v colored by
q1 ·h1 + q2 ·h2 (with q1, q2 ∈ Q and h1, h2 ∈ HQ) is equivalent to the linear combination q1 ·D1 + q2 ·D2

where Di is the Jacobi diagram D with the vertex v colored by hi. The degree of a Jacobi diagram is
the number of its internal vertices. Thus, A(HQ) is a graded vector space:

A(HQ) =

∞⊕
d=0

Ad(HQ).
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The degree 0 part A0(HQ) is 1-dimensional spanned by the empty diagram ∅, while the degree 1 part
A1(HQ) is isomorphic to Λ3HQ via the map

x1

x2 x3

7−→ x1 ∧ x2 ∧ x3.

There is an interesting operation ? in A(HQ): for any HQ-colored Jacobi diagrams D and E whose sets
of external vertices are denoted by V and W respectively, we set

D ? E :=
∑

V ′⊂V, W ′⊂W
β : V ′

'−→W ′

1

2|V ′|
·
∏
v∈V ′

ω
(

color
(
v
)
, color

(
β(v)

))
· (D ∪β E)

where the sum is taken over all ways of identifying a subset V ′ of V with a subset W ′ of W , and
D ∪β E is obtained from D t E by gluing each vertex v ∈ V ′ to β(v) ∈ W ′. Clearly ? is Sp(HQ)-
equivariant if the group Sp(HQ) acts on A(HQ) in the obvious way, i.e. by acting on the colors, and it
is easily verified that (A(HQ), ?) is an associative algebra. Let [−,−]? be the Lie bracket defined by
[D,E]? := D ? E − E ? D. The subspace of A(HQ)

Ac(HQ) =
⊕
k≥1

Ack(HQ)

spanned by non-empty connected Jacobi diagrams is preserved by [−,−]?: we call (Ac(HQ), [−,−]?)
the Lie algebra of symplectic Jacobi diagrams [HM09].

Proposition 4.21. For g ≥ 3, there is a unique Sp(HQ)-equivariant homomorphism of graded Lie
Q-algebras

Y :
L(Λ3HQ)〈

〈r1, r2〉Sp(HQ)

〉
ideal

−→ Ac(HQ)

that is defined by x1 ∧ x2 ∧ x3 7→
x1

x2 x3

in degree 1.

Note that the image of Y is the Lie subalgebra a(HQ) of Ac(HQ) generated by Ac1(HQ) = A1(HQ).
According to (4.17), Y provides an Sp(HQ)-equivariant surjective homomorphism of graded Lie algebras
GrM(I(Σ))→ a(HQ) for g ≥ 6. But, unfortunately, it is not known whether Y is injective (although
it is known to be so in degree 2 [HM09]).

Proof of Proposition 4.21. Clearly there is a unique graded Lie algebra map Ỹ : L(Λ3HQ) → Ac(HQ)
defined in degree 1 by

x1 ∧ x2 ∧ x3 7−→
x1

x2 x3

.

Since Ỹ1 is Sp(HQ)-equivariant and since [−,−]? is Sp(HQ)-equivariant, we deduce that Ỹ is Sp(HQ)-

equivariant. Thus, the proposition will follow from the facts that Ỹ2(r1) = Ỹ2(r2) = 0. We obviously
have

Ỹ2(r1) =
[

α1

α2 β2

,
α3

α4 β4]
?

= 0,

and we have

Ỹ2(r2) =

g∑
i=1

[
α1

α2 β2

,
αg

αi βi]
?

=
[

α1

α2 β2

,
αg

α1 β1]
?

+
[

α1

α2 β2

,
αg

α2 β2]
?

=
α2 α1

β2 αg

−
α1 αg

α2 β2

+

β2
α2

α1 αg

IHX
= 0.

�

The algebra A(HQ) and the Lie algebra Ac(HQ) originate from the theory of finite-type invariants
for 3-manifolds. In particular the following is proved in [HM09] without using Hain’s results. Here

Â(HQ) denotes the degree-completion of the vector space A(HQ).



51

Theorem 4.22 (Habiro–Massuyeau 2009). Let g ≥ 2. There is an injective map Z : I(Σ) → Â(HQ)
which is

(i) multiplicative in the sense that Z(f · h) = Z(f) ? Z(h) for all f, h ∈ I(Σ),

(ii) filtration-preserving in the sense that Z
(
ΓkI(Σ)

)
⊂ ∅ + Â≥k(HQ) for all k ≥ 1.

Furthermore, Z induces at the graded level an Sp(HQ)-equivariant homomorphism of graded Lie Q-
algebras

GrZ :
(

GrΓ I(Σ)
)
⊗Q −→ Ac(HQ)

which, in degree 1, is given by the isomorphism τ1 ⊗Q : (I(Σ)/[I(Σ), I(Σ)])⊗Q→ Λ3HQ ' Ac1(HQ).

Again, the image of GrZ is the Lie subalgebra a(HQ) of Ac(HQ) generated by Ac1(HQ). It is expected
that GrZ is injective or, at least, it is expected to be so in the “stable range”.

About the proof. The map Z is derived from a 3-dimensional TQFT which has been constructed in
[CHM08] using the Le–Murakami–Ohtsuki invariant of [LMO98]. Thus we call Z the LMO homomor-
phism. The injectivity of Z is proved by showing that all the Johnson homomorphisms τ1, τ2, τ3, . . . are
explicitly determined by Z, and using Lemma 4.12.(ii). The multiplicativity of Z is the manifestation
of the functoriality of the TQFT constructed in [CHM08]. The fact that Z is filtration-preserving is
proved by using a kind of surgery calculus in 3-manifolds (the so-called “calculus of claspers” developped
by Goussarov and Habiro). �

4.6. Exercises.

Exercise 4.1. Show that Sp(2;Z) = SL(2;Z).

Exercise 4.2. Let H be a finitely generated free abelian group and let ω : H×H → Z be a symplectic
form. Let ω′ ∈ Λ2H be the bivector corresponding to ω ∈ Λ2H∗ through the isomorphism

w : H
'−→ H∗, h 7−→ ω(h,−)

(a) Show that an automorphism ψ of H preserves the bilinear form ω if and only if (Λ2ψ)(ω′) = ω′.
(b) Deduce that any ψ ∈ Sp(H) satisfies det(ψ) = 1.

Exercise 4.3. Let Σ := Σ1,1 be a torus with one disk removed, and let δ ⊂ int(Σ) be a simple closed
curve parallel to ∂Σ. Show that I(Σ) is the infinite cyclic group generated by the Dehn twist along δ.

Exercise 4.4. Let Σ be an oriented surface with at most one boundary component. Let δ, ρ be simple
closed curves such that ω([δ], [ρ]) = 0 for some arbitrary orientations of these curves. Show that the
commutator [τδ, τρ] belongs to I(Σ) and that it is not trivial in general.

Exercise 4.5. Let Σ be an oriented surface with at most one boundary component.

(a) Show that any two BSCC maps of the same genus are conjugate in M(Σ).
(b) Show that any two BP maps of the same genus are conjugate in M(Σ).

Exercise 4.6. Let k ≥ 2 be an integer. Show that any BP map of genus k is a product of BP maps
of genus 1.

Exercise 4.7. Let k ≥ 3 be an integer. Using the lantern relation, show that any BSCC map of
genus k is a product of BSCC maps of genus 1 and 2.

Exercise 4.8. Let ω : H×H → Z be a symplectic form on a free abelian group H, and let w : H → H∗

be the isomorphism introduced in Exercise 1.6. Show that the isomorphism

Der+
(
L(H)

) restriction

'
// Hom(H,L≥2(H)) ' H∗ ⊗ L≥2(H) '

w−1⊗id
// H ⊗ L≥2(H)

maps Der+
ω (L(H)

)
onto the kernel of the Lie bracket [−,−] : H ⊗ L≥2(H)→ L≥3(H), and prove that

it is Sp(H)-equivariant.

Exercise 4.9. Show that the first Johnson homomorphism τ1 vanishes on every BSCC map.

* * *

Solution to Exercise 4.1. Consider an arbitrary 2× 2 matrix with entries in Z:

M =

(
a b
c d

)
We compute

M t ΩM =

(
a b
c d

)t(
0 1
−1 0

)(
a b
c d

)
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=

(
a c
b d

)(
c d
−a −b

)
=

(
0 ad− bc

cb− ad 0

)
.

It follows that
M t ΩM = Ω⇐⇒ ad− bc = 1.

Solution to Exercise 4.2. (a) The bilinear form ω being skew-symmetric, it can be seen as an
element ω ∈ Hom(Λ2H,Z) ' Λ2H∗. Specifically, let (α, β) := (α1, . . . , αg, β1, . . . , βg) be a symplectic
basis of H, which means that

(4.18) ω(αi, αj) = ω(βi, βj) = 0 and ω(αi, βj) = −ω(βj , αi) = δij .

Then

ω =

g∑
i=1

α∗i ∧ β∗i ∈ Λ2H∗

where (α∗1, . . . , α
∗
g, β
∗
1 , . . . , β

∗
g ) denotes the basis of H∗ dual to the basis (α1, . . . , αg, β1, . . . , βg) of H.

It follows from (4.18) that the isomorphism w : H→H∗ defined by h 7→ ω(h,−) sends αi to β∗i and βi
to −α∗i . Therefore

ω′ =

g∑
i=1

(−βi) ∧ αi =

g∑
i=1

αi ∧ βi.

Let ψ ∈ Aut(H) and denote by

M =

(
C E
D F

)
the matrix of ψ in the basis (α, β). Then

(Λ2ψ)(ω′)

=
∑
k

ψ(αk) ∧ ψ(βk)

=
∑
k,i,j

(cikαi + dikβi) ∧ (ejkαj + fjkβj)

=
∑
k,i,j

cikejkαi ∧ αj +
∑
k,i,j

dikfjkβi ∧ βj +
∑
k,i,j

(cikfjk − djkeik)αi ∧ βj

=
∑
k

∑
i<j

(cikejk − cjkeik)αi ∧ αj +
∑
k

∑
i<j

(dikfjk − djkfik)βi ∧ βj +
∑
k,i,j

(cikfjk − djkeik)αi ∧ βj .

We deduce that

(Λ2ψ)(ω′) = ω′ ⇐⇒
(
CEt − ECt = 0, DF t − FDt = 0, CF t − EDt = Ig

)
⇐⇒ M ΩM t = Ω

⇐⇒ Ω = M−1 Ω (M t)−1

⇐⇒ Ω−1 = M t Ω−1M

⇐⇒ −Ω = M t (−Ω)M ⇐⇒ M ∈ Sp(2g;Z) ⇐⇒ ψ ∈ Sp(H).

(b) Let ψ ∈ Sp(H). We deduce from (a) that

Λ2gH 3 (Λ2nψ)(ω′ ∧ · · · ∧ ω′) = (Λ2ψ)(ω′) ∧ · · · ∧ (Λ2ψ)(ω′)

= ω′ ∧ · · · ∧ ω′

Besides, using a symplectic basis (α, β) of H, we have

Λ2gH 3 ω′ ∧ · · · ∧ ω′ =

g∑
i1,...,ig=1

αi1 ∧ βi1 ∧ · · · ∧ αig ∧ βig

=
∑
σ∈Sn

ασ(1) ∧ βσ(1) ∧ · · · ∧ ασ(g) ∧ βσ(g)

= n! · α1 ∧ β1 ∧ α2 ∧ β2 ∧ · · · ∧ αg ∧ βg.
We deduce that

Λ2gH 3 ω′ ∧ · · · ∧ ω′ = (Λ2nψ)(ω′ ∧ · · · ∧ ω′)
= n! · ψ(α1) ∧ ψ(β1) ∧ ψ(α2) ∧ ψ(β2) ∧ · · · ∧ ψ(αg) ∧ ψ(βg)
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= n! det(ψ) · α1 ∧ β1 ∧ α2 ∧ β2 ∧ · · · ∧ αg ∧ βg
= det(ψ) · ω′ ∧ · · · ∧ ω′

which implies that det(ψ) = 1.

Solution to Exercise 4.3. It is clear that τδ ∈ I(Σ) since the group H1(Σ;Z) is generated by classes
of oriented curves in Σ and any such curve can be made disjoint from δ by a homotopy. We also know
from Proposition 2.7 that τδ has infinite order. Therefore, it suffices to show that I(Σ) is generated
by τδ. For this, we use Birman’s exact sequence (see Proposition 2.9):

π1 (U(Σ+))
Push //M(Σ)

∪ idD ////M(Σ+) // 1.

The subgroup I(Σ) of M(Σ) is mapped by “∪ idD” to I(Σ+) = {1} since Σ+ is a torus. Therefore,
I(Σ) is contained in the image of “Push”, which we denote by I. Let α and β be simple oriented closed
curves in Σ+ which meet in a single point belonging to int(D). Since π1(Σ+) is generated by [α] and

[β], the group π1 (U(Σ+)) is generated by [~α], [~β] and the class f of the fiber U(1) ∼= S1. If we look
back at the proof of Proposition 2.9, we see that

Push([~α])
(2.1)
= τ−1

α−τα+ = 1

since α− is isotopic to α+ in Σ ; the same phenomenon happens for β ; finally it follows easily from the
definition of “Push” that Push(f) = τδ. We conclude that 〈τδ〉 ⊂ I(Σ) ⊂ I ⊂ 〈τδ〉 so that 〈τδ〉 = I(Σ).

Solution to Exercise 4.4. Set H := H1(Σ;Z) and let d, r : H → H be the actions of τδ, τρ in
homology. It follows from Exercise 2.6 that, for any x ∈ H,

dr(x) = d
(
x+ ω([ρ], x) · [ρ]

)
= d(x) + ω([ρ], x) · d([ρ])

=
(
x+ ω([δ], x) · [δ]

)
+ ω([ρ], x) · ([ρ] + 0 · [δ]) = x+ ω([δ], x) · [δ] + ω([ρ], x) · [ρ].

A similar computation for rd(x) gives the same result. Hence [d, r] = 1 ∈ Aut(H) and it follows that
[τδ, τρ] belongs to the Torelli group.

Let δ, ρ be the following simple closed curves in Σ:

ρ

δ

· · ·

It follows from Lemma 1.11 that i(δ, ρ) = 2 since δ and ρ do not delimitate bigons: therefore τδ
and τρ generate a free subgroup of M(Σ) of rank 2, and in particular [τδ, τρ] 6= 1 ∈ M(Σ). Besides
ω([δ], [ρ]) = 0 since the two intersection points of δ and ρ have opposite signs. We conclude that [τδ, τρ]
is a non-trivial element of I(Σ).

Solution to Exercise 4.5. We only consider (b) since (a) can be solved by the same kind of arguments.
Denote by g ≥ 0 the genus of Σ and by n ∈ {0, 1} the number of components of ∂Σ. Let ρ, δ ⊂ Σ and
let ρ′, δ′ ⊂ Σ be simple closed curves defining some BP maps

p := τδτ
−1
ρ , p′ := τδ′τ

−1
ρ′

of genus k ≥ 1. Let S1
∼= Σk,2 and S2

∼= Σg−k,2+n be the subsurfaces of Σ delimited by the curves δ
and ρ; let S′1 and S′2 play the same role for δ′ and ρ′. Since S1

∼= S′1 and S2
∼= S′2, we easily construct

an f ∈ Homeo+,∂(Σ) mapping Si to S′i for each i ∈ {1, 2}, and such that f(δ) = δ′ and f(ρ) = ρ′. We
deduce that

p′ = τf(δ)τ
−1
f(ρ) =

(
fτδf

−1
)(
fτρf

−1
)−1

= fτδτ
−1
ρ f−1 = fpf−1.

Solution to Exercise 4.6. Let Σ be an oriented surface with at most one boundary component. Let
ρ, δ ⊂ Σ be simple closed curves defining a BP map p := τδτ

−1
ρ of genus k ≥ 2. Thus ρ and δ delimitate

in Σ a subsurface S ∼= Σk,2. We can decompose S into k subsurfaces of genus 1

S = S1 ∪ S2 ∪ · · · ∪ Sk−1 ∪ Sk
in such a way that ∂S1 = ρ ∪ ε1, ∂S2 = ε1 ∪ ε2, . . . , ∂Sk−1 = εk−2 ∪ εk−1, ∂Sk = εk−1 ∪ δ where
ε1, . . . , εk−1 ⊂ int(S) are pairwise-disjoint simple closed curves. We deduce that

p = τδτ
−1
ρ = (τδτ

−1
ε1 )(τε1τ

−1
ε2 ) · · · (τεkτ−1

εk−1
)(τεk−1

τ−1
ρ )
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is a product of k BP maps of genus 1.

Solution to Exercise 4.7. Let Σ be an oriented surface with at most one boundary component and
consider a BSCC map d := τδ ∈ M(Σ) of genus k ≥ 3. Thus δ is a simple closed curve bounding a
subsurface S ∼= Σk,1 of Σ. We can embed in S the disk with 3 holes

ρ2

ρ1 ρ3

ρ123

ρ12

ρ31

ρ23

in such a way that we have ρ123 = δ = ∂S, each of ρ1 and ρ2 bounds a subsurface of genus 1, and ρ3

bounds a subsurface of genus k − 2. By the lantern relation, we have

τρ123 = τ−1
ρ1
τ−1
ρ2
τ−1
ρ3
τρ31τρ23τρ12 .

This shows that the initial BSCC map d is a product of 6 BSCC maps of genus 1, 2, k − 2 and k − 1.
Therefore, we can conclude by an induction on k ≥ 3.

Solution to Exercise 4.8. Let Θ : Der+
(
L(H)

)
→ H ⊗ L≥2(H) be the isomorphism under study,

and let (α1, β1, . . . , αg, βg) be a symplectic basis of H. For any δ ∈ Der+
(
L(H)

)
, we compute Θ(δ):

δ 7−→ δ|H 7−→
g∑
i=1

α∗i ⊗ δ(αi) +

g∑
i=1

β∗i ⊗ δ(βi) 7−→ −
g∑
i=1

βi ⊗ δ(αi) +

g∑
i=1

αi ⊗ δ(βi)

Hence the Lie bracket of Θ(δ) is

−
g∑
i=1

[
βi, δ(αi)

]
+

g∑
i=1

[
αi, δ(βi)

]
=

g∑
i=1

[
δ(αi), βi

]
+

g∑
i=1

[
αi, δ(βi)

]
= δ
( g∑
i=1

[αi, βi]
)

= δ(ω′)

where ω′ ∈ Λ2H ' L2(H) is the bivector dual to ω. We deduce that the Lie bracket of Θ(δ) is trivial
if and only if δ is a symplectic derivation.

We now show that Θ is Sp(H)-equivariant. Since Θ is defined as a composition Θ3Θ2Θ1 of three
isomorphisms, it suffices to verify that each of them is Sp(H)-equivariant. The fact that the restriction
homomorphism Θ1 : Der+

(
L(H)

)
→ Hom(H,L≥2(H)) is Sp(H)-equivariant is obvious, if Sp(H) acts

on Hom(H,L≥2(H)) by M · f :=
(
M · (−)

)
◦ f ◦M−1. Also, the fact that Θ2 : Hom(H,L≥2(H)) →

H∗ ⊗ L≥2(H) is Sp(H)-equivariant is obvious, if Sp(H) acts on H∗ ⊗ L≥2(H) by M · (u ⊗ v) :=
(u ◦M−1)⊗ (M · v). To justify now that Θ3 : H∗ ⊗ L≥2(H)→ H ⊗ L≥2(H) is an Sp(H)-equivariant
isomorphism, it remains to prove that w : H → H∗ is Sp(H)-equivariant. This is checked as follows:

∀M ∈ Sp(H), ∀h ∈ H, w(M · h) = w(M(h)) = ω(M(h),−) = ω(h,M−1(−)) = M · w(h).

Solution to Exercise 4.9. Let Σ be an oriented surface of genus g ≥ 2 with one boundary component,
and let δ ⊂ Σ be a simple closed curve bounding a subsurface S ⊂ Σ. We give S the orientation induced
by Σ and we give δ the orientation induced by S. We pick a base point ? ∈ ∂Σ and set π := π1(Σ, ?).
We are asked to show that

τ1(τδ) = 0 ∈ Hom(H,L2(H)) or, equivalently, ρ2(τδ) = 1 ∈ Aut(π/Γ3π).

Let x ∈ π and let ξ be an oriented closed curve based at ? representing x. We can assume that δ and
ξ are transversal and that δ ∩ ξ consists of 2n double points. (There is an even number of intersection
points since δ is null-homologous.) We number these intersection points p1, . . . , p2n in the order that
they are encountered as one runs along ξ in the positive direction. In the computation below, we use
the following notations: for any oriented closed curve γ and for any simple points p, q ∈ γ, we denote
by γpq the path where one runs along γ from p to q in the positive direction; the concatenation of paths
is denoted by ∗; when one runs along a path γ in the negative direction, it is denoted by γ. Then, with
these notations, we have

(τδ)](x) · x−1

= [ξ?p1
∗ δp1p1

∗ ξp1p2
∗ δp2p2

∗ · · · ∗ δp2n−1p2n−1
∗ ξp2n−1p2n

∗ δp2np2n
∗ ξp2n?] · [ξ?p2n

ξp2n?]
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=

n∏
i=1

[ξ?p2i−1
∗ δp2i−1p2i−1

∗ ξp2i−1p2i
∗ δp2ip2i

∗ ξp2i?]

=

n∏
i=1

[ξ?p2i−1
∗ δp2i−1p2i−1

∗ ξp2i−1p2i
∗ δp2ip2i−1

∗ δp2i−1p2i
∗ δp2ip2i−1

∗ δp2i−1p2i
∗ ξp2i?]

=

n∏
i=1

[ξ?p2i−1
∗ δp2i−1p2i−1

∗ ξp2i−1p2i
∗ δp2ip2i−1

∗ δp2i−1p2i−1
∗ δp2i−1p2i

∗ ξp2i?]

=

n∏
i=1

[ξ?p2i−1 ∗ δp2i−1p2i−1 ∗ ξp2i−1? ∗ ξ?p2i−1 ∗ ξp2i−1p2i ∗ δp2ip2i−1 ∗ δp2i−1p2i−1 ∗ δp2i−1p2i ∗ ξp2i?]

=

n∏
i=1

yi · [ξ?p2i ∗ δp2ip2i−1 ∗ δp2i−1p2i−1 ∗ δp2i−1p2i ∗ ξp2i?]

=

n∏
i=1

yi · [ξ?p2i ∗ δp2ip2i−1 ∗ ξp2i−1? ∗ ξ?p2i−1 ∗ δp2i−1p2i−1 ∗ ξp2i−1? ∗ ξ?p2i−1 ∗ δp2i−1p2i ∗ ξp2i?]

=

n∏
i=1

yi · zi · y−1
i · z

−1
i

where yi := [ξ?p2i−1
∗δp2i−1p2i−1

∗ξp2i−1?] and zi := [ξ?p2i
∗δp2ip2i−1

∗ξp2i−1?]. Since δ is null-homologous,

yi is a commutator in π and the above computation shows that (τδ)](x) · x−1 ∈ Γ3π. We deduce that
(τδ)] ∈ Aut(π) is the identity modulo Γ3π.

N.B. In fact, Johnson proved that ker τ1 = J2I(Σ) is generated by BSCC maps [Joh85b]. It is not
known whether this group is finitely generated.
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Appendix A. Fibrations

The concept of “fibration” is a basic notion in homotopy theory. In this appendix, refering to
the textbooks [Bre93, Hat02] for further details, we only review the definition and the behaviour of
fibrations with respect to homotopy groups.

Definition A.1. A map f : E → B is a fibration9 if it has the homotopy lifting property with
respect to any pair of CW-complexes (X,Y ). Thus, for any homotopy u : X × I → B, for every lift
w : Y × I → E of u|Y×I and for every lift u0 : X → E of u(−, 0) such that w(−, 0) = u0|Y , there is a
lift ũ : X × I → E of u such that ũ(−, 0) = u0 and ũ|Y×I = w:

(A.1) X × {0} ∪ Y × I u0∪w //
� _

��

E

f

��

X × I
u

//

ũ

88

B.

It turns out that f is a fibration if and only if it has the homotopy lifting property with respect to
(X,Y ) = (Dn, ∂Dn) for all n ≥ 0 (since CW-complexes are constructed by attachement of disks along
their boundaries). Furthermore, f is a fibration if and only if it has the homotopy lifting property with
respect to (X,Y ) = (Dn,∅) for all n ≥ 0 (since the pair (Dn×I,Dn×{0}∪∂Dn×I) is homeomorphic
to the pair (Dn × I,Dn × {0}) as it is easily checked).

For example, if E = B×F and if f : E → B is the cartesian projection, then f is clearly a fibration.
More generally, we have the following notion.

Definition A.2. A map f : E → B is a fiber bundle with fiber F if, for all b ∈ B, there is a
neighborhood U 3 b and a homeomorphism h : U × F → f−1(U) such that f ◦ h : U × F → U is the
cartesian projection.

Thus, a fiber bundle f : E → B with fiber F is locally “shaped” as the cartesian projection B×F → B.
It follows that fiber bundles are fibrations. For instance, covering maps are fiber bundles with the
peculiarity that their fiber is discrete.

Fibrations behave very well with respect to homotopy groups. Specifically, they have the following
property.

Theorem A.3. Let f : E → B be a fibration, fix some base-points e0 ∈ E, b0 ∈ B such that f(e0) = b0.
We set F := f−1(b0) and denote by i : F → E the inclusion. Then we have a long exact sequence

· · · → πn(F )
i]
// πn(E)

f]
// πn(B)

∂]
// πn−1(F )→ · · · → π0(F )

i]
// π0(E)

f]
// π0(B)

where the homotopy groups of F,E,B are based at e0, e0, b0 respectively.

We refer to [Bre93, Hat02] for the proof and the definition of the “connecting” homomorphism ∂] :
πn(B) → πn−1(F ). In these notes, we only need the definition for n = 1. Then the homomorphism
∂] : π1(B, b0)→ π0(F, e0) is defined by

∂]([u]) =
[
ũ(1)

]
for any path u : [0, 1]→ B such that u(0) = u(1) = b0 and where ũ : [0, 1]→ E is a lift of u such that
ũ(0) = e0. (The existence of ũ is ensured by (A.1) with X a singleton and Y := ∅.)

9 Fibrations in our sense are sometimes called “Serre fibrations” in the litterature.
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