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The set K of knots in the ambient space R3 is a fundamental object of study
in low-dimensional topology. However it is difficult to apply algebraic methods
directly to this set, which is too “narrow” to show interesting structures. One way
to overcome this difficulty is to insert the set of knots into a well-structured and
large-enough category.

In these notes, which follow lectures given at the Graduate School of Mathe-
matical Sciences of the University of Tokyo during Autumn 2019, we shall present
two such categories. On the one hand, we review the category T of “tangles”
and, following works of V. Drinfeld, D. Bar-Natan, T. Le & J. Murakami and oth-
ers, we explain the combinatorial construction of the “Kontsevich integral” Z as a
functor on T . On the other hand, we present the category B of “bottom tangles
in handlebodies” which embeds naturally into the category of (2 + 1)-dimensional
cobordisms and, reporting on a recent work of K. Habiro and the author, we ex-
tend Z to the category B. Finally, we overview some important properties of this
extended Kontsevich integral.

These lecture notes are organized as follows:
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Due to the time-limitation of lectures, many of the results have been stated with-
out proofs. The reader may find complete proofs in the graduate-level textbooks
and the original articles that we have indicated. In particular, a large part of the
material that has been omitted in the first four sections can be found in [Oh02] or
in [CHM12].

Conventions 0.1. Unless otherwise stated, all manifolds are assumed to be smooth
(possibly with boundary or corners), and all maps between manifolds are assumed
to be smooth.
We denote I := [0, 1] the unit interval, and S1 := {z ∈ C : |z| = 1} the unit circle.
The usual frame of the ambient space R3 is denoted by (~x, ~y, ~z) where ~x = (1, 0, 0),
~y = (0, 1, 0), ~z = (0, 0, 1).
When needed, the letter K will stand for a field of characteristic zero which will
serve for the ground ring of linear algebra. �
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1. The set K of knots

A knot is the image K of an embedding S1 → R3. Two knots K and K ′ are
isotopic if there exists a map H : R3 × I → R3 such that H(−, 0) = idR3 , H(−, 1)
maps K to K ′ and H(−, t) is a self-diffeomorphism of R3 for each t ∈ I.

Remark 1.1. Being the image of S1 ⊂ C which has the counterclockwise orienta-
tion, any knot is oriented in our definition. �

A knot diagram is the image D of an immersion S1 → R2 which self-intersects
transversely in finitely many double points, called crossings ; furthermore, each
crossing comes with an information over/under so that it can be of two different
kinds:

(1.1)

Two knot diagrams D and D′ are isotopic if there exists a map H : R2 × I → R2

such thatH(−, 0) = idR2 , H(−, 1) mapsD toD′ andH(−, t) is a self-diffeomorphism
of R2 for each t ∈ I.

Given a knot K ⊂ R3 and an affine plan P ⊂ R3, one can consider the image
D of K by the orthogonal projection onto P ∼= R2. If D turns out to be a knot
diagram, then D is said to represent K.

Example 1.1. Here is a knot diagram representing the trefoil knot :

�

Clearly, any knot diagram arises in this way by orthogonal projection of a knot,
and the former determines the latter up to isotopy.

Theorem 1.1 (Reidemeister [Re27]). Let K and K ′ be knots represented by dia-
grams D and D′, respectively. Then K is isotopic to K ′ if and only if D can be
transformed to D′ by a sequence of isotopies and local moves R I, R II and R III
shown below:

About the proof. The “if” part is easily verified. To prove the “only if” part, it
is better to switch from the smooth category to the piecewise-linear category and
consider polygonal knots. Then a proof can be found in [Mu96, §4.1]. �
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Exercise 1.1. Observe that the R II move is invariant under “mirror reflection”.
Verify that the “mirror image” of R I (resp. R III) is a consequence of R I and R II
(resp. R III and R II). �

Let n ≥ 1 be an integer. An n-component link is the image L of an embedding
tnS1 → R3 of n copies of S1. For instance, the disjoint union (in separate balls)
of two knots gives a 2-component link. The notion of isotopy for knots extend in
the obvious way to links and, similarly, there is an obvious notion of link diagram.

Remark 1.2. Theorem 1.1 is also valid in the case of links. �

One important activity in low-dimensional topology consists in constructing iso-
topy invariants of links. Here is a simple example:

Exercise 1.2. The linking number of a 2-component link L = (L1, L2) is the sum

Lk(L1, L2) :=
1

2

∑
p

ε(p) ∈ Z

running over all mixed crossings p of a link diagram of L, where ε(p) = ±1 is the
sign of p as defined at (1.1). Using the version of Theorem 1.1 for links, show that
Lk(L1, L2) is well-defined (i.e. is independent of the choice of the link diagram). �

Let us also mention a stronger example of link invariant:

Theorem 1.2 (Alexander [Al28], Conway [Co70]). There exists a unique isotopy
invariant ∇(L) ∈ Z[z] of links L such that ∇(unknot) = 1 and

(1.2) ∇(L+)−∇(L−) = z · ∇(L0)

for any three links L+, L−, L0 that only differ in a ball of R3 as follows:

About the proof. The unicity of ∇ is easily proved in the following way. Assume
that ∇ and ∇′ are polynomial link invariants taking the value 1 on the unknot and
satisfying (1.2). Then ∇̃ := ∇−∇′ is a polynomial link invariant vanishing on the

unknot and satisfying (1.2). We shall prove by induction on c ≥ 0 that ∇̃ vanishes
for any link that can be represented by a diagram with at most c crossings. This
is true for c = 0: indeed,

so that ∇̃ vanishes on the n-component unlink for any n ≥ 1. Assume that the
induction hypothesis is verified at rank c, and let L be a link represented by a dia-
gram D showing c+1 crossings. Then it follows from (1.2) that ∇̃(L) is unchanged
if one switches the sign of any crossing of D. Besides, it is easily seen that D can
be transformed by changing some crossings to a link diagram that represents the
unlink. Therefore ∇̃(L) = 0 which proves the induction hypothesis at rank c+ 1.
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The existence of ∇ is much more difficult to establish. There are several ways to
construct the invariant ∇. One possibility is to regard links as “braid closures” and
use remarkable representations of braids groups due to Burau: see [KT08, §3.4.2]
or [Oh02, §2.3], for instance. The original approach of Alexander, which dates back
to the 1920’s, used the theory of covering spaces and some elementary commutative
algebra: see [Tu01, §19] or [Oh02, §1.3], for instance. �

Exercise 1.3. Let L be an n-component link. Show that the polynomial ∇(L)
only consists of monomials whose degrees have the same parity as n− 1. �

For the rest of this section, let us restrict ourselves to knots. An important
challenge would be to find algebraic structures in the quotient set

K :=

{
knots in R3

}
isotopy

and to understand how this structure is reflected by some isotopy invariants of
knots. It turns out that K is, at least, a commutative monoid:

Exercise 1.4. Let K0 and K1 be knots. Decompose R3 into two half-spaces H0

and H1 delimited by a plan and assume, after an isotopy, that Ki is included in Hi.
Consider an embedding B : I × I → R3 such that Ki intersects the band B(I2)
along the arc B({i} × I) as shown below:

Prove that the connected-sum K0]K1 of K0 and K1 given by

is well-defined up to isotopy of knots (i.e., it is independent of the choices of the
decomposition R3 = H0 ∪ H1 and the band B). Next, verify that the set K with
this operation ] is a commutative monoid. �

A knot K is prime if it is not trivial and if a decomposition of the form K =
K0]K1 only occurs when K0 or K1 is the unknot. A classical result of Schubert
asserts that any knot can be written uniquely as a connected-sum of finitely many
prime knots [Sc49]. (See [Mu96, §5.1] for a precise statement.) Therefore the study
of the monoid K somehow reduces to the study of the set P of prime knots, which
happens to be infinite. However, since the set P does not seem to support any
interesting internal operation, algebra will not be further helpful in that direction.
Hence we see the necessity to enlarge K in order to get richer structures. . .
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To do this in the next sections, we need to introduce a slight refinement of the
notion of “knot”. A framed knot is a knot K along which a transverse vector field
is also given. The notion of isotopy for knots extends in the obvious way to framed
knots. Any knot diagram defines a framed knot (which is unique up to isotopy) by
taking the vector field orthogonal to the blackboard where it has been drawn: this
is the “blackboard framing” convention.

Theorem 1.3 (Reidemeister ′). Let K and K ′ be framed knots represented by di-
agrams D and D′, respectively. Then K is isotopic to K ′ if and only if D can be
transformed to D′ by a sequence of isotopies and local moves R I ′, R II and R III
shown below:

Proof. The “if” part is easily verified. To prove the “only if” part, consider two
isotopic framed knots K and K ′ with diagrams D and D′, respectively. Since K
and K ′ are (a fortiori) isotopic as unframed knots, Theorem 1.1 implies that D can
be transformed to D′ by a sequence of isotopies and moves R I, R II and R III:

(1.3) D = D0  D1  · · · Di  Di+1  · · ·Dn = D′

Choose a small disk U0 in R2 such that U0 ∩ D is an interval: by induction on
i ≥ 0, let Ui+1 be a disk “image” of Ui under the move Di  Di+1 such that
Ui+1 ∩Di+1 is an interval. Each time that a R I move Di  Di+1 appears in the
sequence (1.3), we replace it by a R I ′ move followed by a sequence of R II and R III
moves in order to move the “extra” curl of the R I ′ move into Ui+1. Thus, we have
tranformed D to a new diagram D′′ by a sequence of isotopies and R I ′, R II and
R III moves, and D′′ only differs from D′ = Dn by the presence of some small curls
in Un. Let K ′′ be the isotopy class of framed knots corresponding to D′′. Since
K ′′ is isotopic to K which is itself isotopic to the framed knot K ′, there should be
as many positive curls as negative curls in Un. Hence we can transform D′′ to D′

by some R I ′ moves. We conclude that D and D′ are related one to the other by
isotopies and R I ′, R II, R III moves. �

Exercise 1.5. The framing number of a framed knot K is the sum

Fr(K) :=
∑
p

ε(p) ∈ Z

running over all crossings p of a knot diagram of K, where ε(p) = ±1 is the sign
of p as defined at (1.1). Using Theorem 1.3, show that Fr(K) is well-defined (i.e. is
independent of the choice of the knot diagram). �

Exercise 1.6. Consider the quotient set

Kfr :=

{
framed knots in R3

}
isotopy

and check that the operation ] of Exercise 1.4 is also defined on Kfr. Prove that
Kfr is isomorphic to K × Z as a commutative monoid. �
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2. The category T of tangles

A tangle is the image T of a proper embedding of finitely many copies of I and S1

into the cube [−1,+1]3 such that the boundary points (i.e. the images of ∂I) are
uniformly distributed along the intervals [−1,+1]× {0} × {±1}.

Remark 2.1. Consisting of images of S1 ⊂ C (which has the counterclockwise
orientation) and images of I ⊂ R (which has the positive direction), any tangle is
oriented in our definition. �

Two tangles T and T ′ are isotopic if there exists a map H : [−1,+1]3 × I →
[−1,+1]3 such that H(−, 0) = idR3 , H(−, 1) maps T to T ′ and, for each t ∈ I,
H(−, t) is a self-diffeomorphism of [−1,+1]3 which is the identity on ∂

(
[−1,+1]3

)
.

Example 2.1. By identifying R3 with the interior of [−1,+1]3, we can view knots
(and links) as tangles. �

There is a notion of tangle diagram which generalizes the notion of knot diagram.
After an isotopy, any tangle gives rise to a tangle diagram by doing an orthogonal
projection on the plan R× {0} × R.

Let Mon(+,−) be the monoid freely generated by the symbols “+” and “−”.
Denote by | · | : Mon(+,−) → N the length of words. For instance, the words ∅,
+−, and + + + are elements of Mon(+,−), of length 0, 2 and 3 respectively. The
source s(T ) ∈ Mon(+,−) of a tangle T is the word in “+” and “−” that is read
along the oriented interval [−1,+1]×{0}×{+1} when each boundary point of T is
given the sign + (resp. −) if the orientation of T at that point is downwards (resp.
upwards). Similarly, the target t(T ) ∈ Mon(+,−) of T is defined as the word read
along the interval [−1,+1]× {0} × {−1}.

Example 2.2. Here is a tangle diagram which represents a tangle T with s(T ) =
+ +−− and t(T ) = +−:

�

Example 2.3. For any w ∈ Mon(+,−), we denote by ↓w the “trivial” tangle
with straight vertical components whose orientations are such that s(↓w) = w and
t(↓w) = w. �

Proposition 2.1. There is a strict monoidal1 category T whose set of objects is
Mon(+,−) and whose morphisms s → t (for any s, t ∈ Mon(+,−)) are isotopy
classes of tangles T such that s(T ) = s and t(T ) = t.

Proof. For any two tangles T and T ′ such that t(T ) = s(T ′), let T ′◦T be the tangle
obtained by gluing the cube containing T “above” the cube containing T ′, and
“rescaling” the resulting parallelepiped to [−1,+1]3. It is easily checked that we get
a category T with composition rule ◦; the identity morphism of any w ∈ Mon(+,−)
is the “trivial” tangle ↓w described in Example 2.3.

1The definition of a (strict) monoidal category can be read at https://en.wikipedia.org/

wiki/Monoidal_category.

https://en.wikipedia.org/wiki/Monoidal_category
https://en.wikipedia.org/wiki/Monoidal_category
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We define a bifunctor ⊗ : T × T → T as follows. For any two objects w,w′ ∈
Mon(+,−), let w ⊗ w′ be the concatenation ww′ of the words w and w′ (in this
order). For any morphisms T ∈ T (s, t) and T ′ ∈ T (s′, t′), let T ⊗ T ′ ∈ T (s s′, t t′)
be the tangle obtained by gluing the cube containing T “on the left side of” the
cube containing T ′, and “rescaling” the resulting parallelepiped to [−1,+1]3. It is
easily seen that ⊗ is a tensor product in T whose unit object is the empty word. �

Exercise 2.1. Let n ≥ 1 be an integer. An n-strand braid is a tangle T consisting
of n intervals such that

• s(T ) = t(T ) =

n times︷ ︸︸ ︷
+ · · ·+

• for every s ∈ [−1,+1], the plan R2 × {s} cuts T in exactly n points.

Prove that the set Bn of isotopy classes of n-strand braids is a group under the
composition law of tangles, and check that the obvious map

p : Bn −→ Sn

(which assigns to any braid the corresponding permutation of the boundary points)
is a surjective group homomorphism. �

Exercise 2.2. Consider now the group PBn := ker p of n-strand pure braids.

(1) Give a split short exact sequence of groups

1→ Fn −→ PBn+1
ε−→ PBn → 1,

where Fn denotes a free group of rank n and the map ε consists in “deleting”
the last strand. (Caution: it is not easy to prove rigorously that ker ε is a
free group of rank n.)

(2) Deduce that PBn is generated by the pure braids τij shown below, for all
1 ≤ i < j ≤ n:

n... ... ...
1 i j

(3) Prove that the abelianization of PBn is a free abelian group of rank n(n−1)
2 .

(Hint: use linking numbers as defined in Exercise 1.2.)
(4) Verify that the following relations2 are satisfied in PBn:

τrsτijτ
−1
rs = τij if r < s < i < j or i < r < s < j,

τrsτijτ
−1
rs = τ−1

rj τijτrj if r < s = i < j,

τrsτijτ
−1
rs = [τsj , τrj ]

−1τij [τsj , τrj ] if r < i < s < j,
τrsτijτ

−1
rs = (τsjτij)

−1τij(τsjτij) if r = i < s < j;

here [x, y] denotes the group commutator x−1y−1xy. �

A framed tangle is a tangle T together with a transverse vector field along each
of its components; furthermore, we assume that the vector fields coincide with ~y at
each boundary point of T . The notion of isotopy for tangles extends in the obvious

2In fact, according to Artin [Ar47], this set of relations defines a presentation of the group PBn.
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way to framed tangles. Hence, by reproducing Proposition 2.1, we get a framed
version T fr of the strict monoidal category T . Besides, using the “blackboard
framing” convention, any tangle diagram defines a framed tangle which is unique
up to isotopy.

Theorem 2.1 (Turaev [Tu89], Yetter [Ye88], Shum [Sh94]). As a strict monoidal
category, T fr is generated by the objects +,− and by the morphisms

++

++

,
++

++

, +− , −+ ,
−+

,
+−

,

+

+

,

+

+

subject to a finite set of relations expressing the fact that “ T fr is the strict ribbon
category freely generated by the object + ”.

About the proof. This can be regarded as a generalization of Theorem 1.3. For a
precise statement (including the definition of a “ribbon category”) and a detailed
proof, we refer to [Tu94, Theorem I.2.5 & §I.3]. �

Exercise 2.3. Let PBn be the pure braid group defined in Exercise 2.2. Define
the group PBfr

n of n-strand framed pure braids and show that PBfr
n is canonically

isomorphic to PBn × Zn. �

3. Drinfeld–Kohno algebras and Jacobi diagrams

We start by recalling some general constructions in group theory. To any
group G, we can associate the group algebra

K[G].

This is the (unital associative) algebra whose underlying vector space is freely
generated by the set G, and whose product is induced by the group law of G.

Exercise 3.1. A Hopf algebra is a vector space H together with some linear maps
µ : H ⊗H → H (the product), η : K → H (the unit), ∆ : H → H ⊗ H (the
coproduct), ε : H → K (the counit) and S : H → H (the antipode) such that

• (H,µ, η) is an algebra,
• (H,∆, ε) is a coalgebra,
• ∆ and ε are algebra maps (or, equivalently, µ and η are coalgebra maps),
• µ (S ⊗ idH) ∆ = µ (idH ⊗S) ∆ = η ε.

Show that there is a unique Hopf algebra structure on K[G] such that the underlying
algebra structure is the one described above, and the coproduct ∆ is given by
∆(g) = g ⊗ g for any g ∈ G. How are the counit ε and the antipode S defined? �

The augmentation ideal I := I(G) of K[G] consists of all linear combinations∑
x kx · gx ∈ K[G] whose sum of coefficients

∑
x kx vanishes. The I-adic filtration

of the algebra K[G] is the decreasing sequence of ideals

K[G] = I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · ·
We are interested in the associated graded algebra

GrK[G] :=
+∞⊕
k=0

Ik

Ik+1

which inherits from K[G] the structure of a graded Hopf algebra.



KNOTS, CATEGORIES OF TANGLES AND THE KONTSEVICH INTEGRAL 9

Exercise 3.2. Show that the degree one part I/I2 of GrK[G] is canonically iso-
morphic to Gab ⊗Z K, where Gab denotes the abelianization of G. Deduce the
existence of a surjective homomorphism of graded algebras

Υ : T (Gab ⊗Z K) −→ GrK[G]

where, for a vector space V , we denote by T (V ) the graded algebra freely generated
by V in degree one. �

We are also interested in the I-adic completion’K[G] = lim←−
k

K[G]/Ik

which inherits from K[G] the structure of a complete3 Hopf algebra. The next
definition is borrowed to [SW19], where the reader may find comparison with other
notions of “formality”.

Definition 3.1. A group G is filtered-formal if there exists an isomorphism of

complete Hopf algebras between ’K[G] and the degree-completion

ĜrK[G] :=
+∞∏
k=0

Ik

Ik+1

of GrK[G], and if this isomorphism induces the identity at the graded level. �

Exercise 3.3. Consider a free group F of finite rank n ≥ 1 and let H := Fab.
Show that the homomorphism Υ : T (H ⊗Z K) → GrK[F ] of Exercise 3.2 is an
isomorphism and deduce that F is filtered-formal. �

Let n ≥ 1 be an integer. We now consider the above constructions for the pure
braid group PBn. The Drinfeld–Kohno algebra is the algebra U(tn) generated by
the symbols

tij for all i, j ∈ {1, . . . , n} distinct

and subject to the relations

tij = tji, [tij , tik + tjk] = 0 (i, j, k distinct), [tij , tkl] = 0 (i, j, k, l distinct).

(Here [a, b] denotes the algebra commutator ab− ba.)

Remark 3.1. (1) Since the above relations are homogeneous by declaring that
deg(tij) := 1 for all i, j, the algebra U(tn) is actually graded.

(2) Since the above relations are commutator identities, we can also view them
as defining relations of a Lie algebra tn. This is the Drinfeld–Kohno Lie algebra,
whose universal enveloping algebra4 is the Drinfeld–Kohno algebra U(tn). �

Recall the generating system {τij}i,j of PBn provided by Exercise 2.2.

Theorem 3.1 (Kohno [Ko85, Ko94]). The group PBn is filtered-formal and there
is a unique isomorphism of graded Hopf algebras between GrK[PBn] and U(tn) that
maps the class {τij − 1} ∈ I/I2 to tij for all i, j.

3The definition of a complete Hopf algebra can be found in [Qu69, Appendix A], and involves

a few subtilities. A reader not yet familiar with Hopf algebras may skip this at the first reading.
4The definition of the universal enveloping algebra U(g) of a Lie algebra g can be read at

https://en.wikipedia.org/wiki/Universal_enveloping_algebra.

https://en.wikipedia.org/wiki/Universal_enveloping_algebra
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Example 3.1. In degree 1, Theorem 3.1 says that
(
PBn

)
ab
⊗Z K ∼= I/I2 is the

abelian group on the (n2 − n) generators tij subject to the relations tij = tji: we
already know that from Exercise 2.2 (3). �

Theorem 3.1 will be proved in Section 4 using a functorial construction that
involves the entire category of tangles. On this purpose, we shall now define a
category of “diagrams” into which the algebras U(tn) embed for all n ≥ 1.

Let X be a compact, oriented 1-manifold. A Jacobi diagram D on X is a
unitrivalent graph such that each trivalent vertex is oriented (i.e., equipped with a
cyclic ordering of the incident half-edges), the set of univalent vertices is embedded
in the interior of X, and each connected component of D contains at least one
univalent vertex. We identify two Jacobi diagrams D and D′ on X if there is a
diffeomorphism (X∪D,X)→ (X∪D′, X) preserving the orientations and connected
components of X and respecting the vertex-orientations. In pictures, we draw the
1-manifold part X with solid lines, and the graph part D with dashed lines, and
the vertex-orientations are counterclockwise.

Example 3.2. Here is a Jacobi diagram on X :=
1 2 3

:

1 32 �

Consider the vector space A(X) generated by Jacobi diagrams on X modulo the
STU relation:

(3.1)
STU

= −

Note that A(X) is a graded vector space if the degree of a Jacobi diagram is defined
by half the total number of vertices.

A chord of a Jacobi diagram is a connected component of the underlying graph
that is reduced to one edge: - - - - - . It follows from the STU relation that A(X)
is generated by Jacobi diagrams consisting only of chords, i.e. showing no trivalent
vertex. Thus, Jacobi diagrams are also called chord diagrams in the literature.

Exercise 3.4. Let ` be a connected component of X. There are three operations
on Jacobi diagrams which involve `:

(1) Deleting operation. Let ε`(X) be the 1-manifold obtained from X by delet-
ing the component `. Define a linear map ε` : A(X) → A(ε`(X)) that
vanishes on any Jacobi diagram D with (at least) one univalent vertex
on `.

(2) Orientation-reversing operation. Let S`(X) be the 1-manifold obtained
from X by reversing the orientation of `. Define a linear map S` : A(X)→
A(S`(X)) that transforms any Jacobi diagram D to (−1)dD, where d is the
number of univalent vertices of D on `.

(3) Doubling operation. Let ∆`(X) be the 1-manifold obtained from X by
doubling the component ` to (`′, `′′). Define a linear map ∆` : A(X) →
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A(∆`(X)) that transforms a Jacobi diagram D to the sum of all ways of
lifting every univalent vertex of D on ` to either `′ or `′′.

The above three operations can be mixed into a single one:

(4) Cabling operation. Let f : π0(X)→ Mon(+,−) be any map. Define at the
same time a 1-manifold Cf (X) and a linear map Cf : A(X) → A(Cf (X))
by proceeding as follows for every ` ∈ π0(X):
• if |f(`)| = 0, apply the map ε`;
• if |f(`)| > 0, apply the map ∆` repeatedly to get |f(`)| copies of ` and,

next, apply the map Sc to every new component c corresponding to a
letter “−” in the word f(`).

�

Exercise 3.5. Define a linear map ∆ : A(X) → A(X) ⊗ A(X) by sending any
Jacobi diagram to the sum of all ways of splitting the set of connected components
of the underlying graph into two subsets. Then, define another linear map ε :
A(X)→ K such that (A(X),∆, ε) is a cocommutative coalgebra. �

Exercise 3.6. Show that the inclusion of an interval ↑ in a circle 	 induces an
isomorphism between A(↑) and A(	). �

Exercise 3.7. Prove that the AS relation and the IHX relation

(3.2)
AS IHX

= − − + = 0

are verified in A(X) for any compact oriented 1-manifold X. Then, what is the
reason for calling “Jacobi diagrams” the generators of A(X)? �

Exercise 3.8. For a finite set S, let A(S) be the vector space generated by S-
colored Jacobi diagrams modulo the AS and IHX relations shown at (3.2). Here,
an S-colored Jacobi diagram is a unitrivalent graph whose trivalent vertices are ori-
ented, whose univalent vertices are colored by S, and whose connected components
always contain at least one univalent vertex. Here is an example for S = {1, 2, 3}:

3
1

1
2

Denote by ↓S the disjoint union of intervals indexed by S. Prove that the linear map

χ : A(S) −→ A(↓S)

that sends any S-colored Jacobi diagram D to the average of all ways of attaching
the s-colored vertices of D to the s-th interval, for all s ∈ S, is surjective5. �

A compact oriented 1-manifold X is polarized if ∂X is decomposed into a top
part ∂+X and a bottom part ∂−X, and if each part comes with a total ordering. The
target t(X) ∈ Mon(+,−) of X is the word obtained from ∂−X by replacing each

5In fact, χ is an isomorphism which is usually referred to as the diagrammatic PBW isomor-
phism. See the paper [BN95a], where the bijectivity of χ is proved and relationship with the

Poincaré–Birkhoff–Witt theorem for Lie algebras is explained.
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positive (resp. negative) point with “+” (resp. “−”). The source s(X) ∈ Mon(+,−)
of X is defined similarly using ∂+X, but the rule for the signs +,− is reversed.

Example 3.3. Every tangle T with s(T ) = s and t(T ) = t induces in the obvious
way a polarized 1-manifold with source s and target t. For simplicity, the latter is
still denoted by T . �

Proposition 3.1. There is a strict monoidal linear6 category A whose set of objects
is Mon(+,−) and whose set of morphisms s→ t (for any s, t ∈ Mon(+,−)) is

A(s, t) :=
⊕
X

(
Sc(X)-coinvariants of A(X)

)
where X runs over diffeomorphism classes of polarized 1-manifolds with s(X) = s
and t(X) = t, c(X) is the number of circle components of X and the symmetric
group Sc(X) acts on A(X) by permutation of those circle components.

Proof. For a Jacobi diagram D on a polarized 1-manifold X and a Jacobi dia-
gram D′ on a polarized 1-manifold X ′ such that s(X) = t(X ′), let D ◦D′ be the
union of D and D′ on the 1-manifold X ∪s(X)=t(X′) X

′. It is easily checked that
we get a linear category A with composition rule ◦; the identity morphism of any
w ∈ Mon(+,−) is given by the empty Jacobi diagram on the polarized 1-manifold
underlying the tangle ↓w (see Example 2.3).

The bifunctor ⊗ : A×A → A is the concatenation of words at the level of objects,
and is given by juxtaposition of polarized 1-manifolds at the level of morphisms.
It can be verified that ⊗ is a tensor product in A whose unit object is the empty
word. �

We now explain the relationship between Drinfeld–Kohno algebras and the cat-
egory of Jacobi diagrams A. Note beforehand that A(w,w) is an algebra for any
word w ∈ Mon(+,−).

Proposition 3.2 (Bar-Natan [BN96]). Let n ≥ 1 be an integer and denote n :=
+ · · ·+︸ ︷︷ ︸
n times

∈ Mon(+,−). The homomorphism of graded algebras

U(tn) −→ A(↓n) ⊂ A(n, n)

that maps tij to the Jacobi diagram t′ij :=
...

i1 j n

......

for any (i, j), is injective.

About the proof. The proof provided by [BN96] is rather indirect, using invariants
of braids. We sketch below a more direct proof, using only algebraic arguments.

Let ι : U(tn) → A(↓n) be the algebra homomorphism such that ι(tij) := t′ij .
That ι is well-defined follows from the 4T relation shown below, which is itself a
consequence of the STU relation in A:

+ = +

4T

The injectivity of the map ι can be proved in the following way. There is a
sequence of Lie algebras

(3.3) 0 // L(x1, . . . , xn)
κ // tn+1

ε // tn // 0

6A category is linear if it is enriched over the category of vector spaces, see https://en.

wikipedia.org/wiki/Preadditive_category for instance.

https://en.wikipedia.org/wiki/Preadditive_category
https://en.wikipedia.org/wiki/Preadditive_category


KNOTS, CATEGORIES OF TANGLES AND THE KONTSEVICH INTEGRAL 13

where tn is the Drinfeld–Kohno Lie algebra (see Remark 3.1), L(x1, . . . , xn) is the
free Lie algebra on n generators, the arrow κ is the Lie homomorphism sending xi
to ti,n+1, and the arrow ε is the Lie homomorphism sending tij to tij (resp., to 0)
for all (i, j) such that i ≤ n and j ≤ n (resp., such that i = n+1 or j = n+1). That
(3.3) is exact can be checked from the defining presentations of the Drinfeld–Kohno
Lie algebras.

Denote by Ac(↓n) the subspace of A(↓n) spanned by Jacobi diagrams whose
underlying graph is connected: it is easily checked from the STU relation that
Ac(↓n) is a Lie subalgebra for the Lie bracket given by the associative product of
A(↓n) ⊂ A(n, n). Consequently, the algebra homomorphism ι restricts to a Lie
homomorphism

ιc : tn −→ Ac(↓n).

It turns out that the algebra A(↓n) with the coalgebra structure given by Exer-
cise 3.5 is a cocommutative Hopf algebra, whose primitive part{

x ∈ A(↓n) : ∆(x) = x⊗ 1 + 1⊗ x
}

is Ac(↓n). Hence, by the Milnor–Moore theorem [MM65], A(↓n) is the universal
enveloping algebra of Ac(↓n). Therefore (as follows from the Poincaré–Birkhoff–
Witt theorem), the injectivity of ι is equivalent to the injectivity of ιc. Hence, using
(3.3) and an induction on n ≥ 1, it suffices to prove the injectivity of the algebra
homomorphism

K : K[[x1, . . . , xn]] = U
(
L(x1, . . . , xn)

)
−→ Ac(↓n+1), xi 7−→ ti,n+1.

Finally, the injectivity of K can be proved using an analogue of the Poincaré–
Birkhoff–Witt theorem for Jacobi diagrams [BN95a] (see Exercise 3.8) and a certain
“homotopic reduction” of Jacobi diagrams [BN95b]: the interested reader may find
the details in [Ma18, Lemma 6.1]. �

In the next sections, U(tn) will be regarded as a subalgebra of A(↓n) ⊂ A(n, n).
This subalgebra is called the algebra of horizontal chord diagrams.

4. Drinfeld associators and the Kontsevich integral Z

Conventions 4.1. Starting from this section, we shall assume that knots & tangles
are always framed and, for simplicity, the superscript “fr” will be suppressed from
the notations Kfr & T fr. �

We now explain the combinatorial construction of the Kontsevich integral, which
is a strong isotopy invariant of tangles. Roughly speaking, it is defined as a functor
Z from the category T of tangles to the category A of Jacobi diagrams. But, to
be exact, we should say that Z is valued in the degree-completion of the category
A which, for simplicity, we still denote by A. Besides, Z is defined on a slight
refinement of the category T , which we now introduce.

Let Mag(+,−) be the magma freely generated by the symbols “+” and “−”. For
instance, the words ∅, (+−), (+(++)) and ((++)+) are elements of Mag(+,−).
There is a canonical map Mag(+,−) → Mon(+,−) which consists in forgetting
parentheses: thus, as we shall do without further mention, elements of Mag(+,−)
induce elements of Mon(+,−). The refinement of T that we need is the category
Tq of q-tangles, whose set of objects is Mag(+,−) and whose morphisms w → w′
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are the same as in T for any w,w′ ∈ Mag(+,−). Then Tq is a non-strict7 monoidal
category: its associativity isomorphisms are denoted by

(4.1)

(w (w′ w′′ ))

((w w′ ) w′′ )

for any w,w′, w′′ ∈ Mag(+,−)

and, since Tq is strictly left (resp. right) unital, its unitality isomorphisms are the
identity morphisms.

The main ingredient to construct the functor Z : Tq → A will be the following.

Definition 4.1. A Drinfeld associator is a pair (µ, ϕ) consisting of a scalar µ ∈
K \ {0} and a formal power series ϕ ∈ K〈〈X,Y 〉〉 of the form

ϕ = exp
(µ2

24
[X,Y ] +

(
infinite sum of iterated commutators in X,Y of length > 2

))
which is solution of the pentagon equation

(4.2) ϕ(t12, t23 + t24)ϕ(t13 + t23, t34) = ϕ(t23, t34)ϕ(t12 + t13, t24 + t34)ϕ(t12, t23)

in the degree-completion “U(t4) of the Drinfeld–Kohno algebra. �

Remark 4.1. The original definition given by Drinfeld had two additional condi-

tions, which are the hexagon equations in “U(t3) and involve the parameter µ:

exp
(µ(t13 + t23)

2

)
= ϕ(t13, t12) exp

(µt13

2

)
ϕ(t13, t23)−1 exp

(µt23

2

)
ϕ(t12, t23),

exp
(µ(t12 + t13)

2

)
= ϕ(t23, t13)−1 exp

(µt13

2

)
ϕ(t12, t13) exp

(µt12

2

)
ϕ(t12, t23)−1.

Later, Furusho proved that they are consequences of the pentagon [Fu10]. �

The existence of associators is a very important result of Drinfeld [Dr90]. The
proof of this would constitute a series of lectures in itself: therefore, we simply
admit it here. In a few words, Drinfeld first constructs a particular associator
ϕKZ for K := C and µ := 2iπ using the holonomy of the Knizhnik–Zamolodchikov
connection (see [Ka95, Chapter XIX]); next he deduces the existence of associators
for any field K of characteristic zero (see [BN98]).

In the sequel, we fix a Drinfeld associator ϕ for the parameter µ := 1 and we
denote

Φ := ϕ(t12, t23)−1 ∈ U(t3) ⊂ A(↓1 ↓2 ↓3).

We shall need the quantity

(4.3) ν :=

â
S2(Φ)

ì−1

= +
1

48
+ (deg > 2) ∈ A(↓),

7Recall that a non-strict monoidal category differs from a strict one by the presence of nat-

ural isomorphisms, the associativity isomorphisms and unitality isomorphisms, which should be
coherent in the sense that they should satisfy some pentagon identities and triangle identities:

see https://en.wikipedia.org/wiki/Monoidal_category and the references given there.

https://en.wikipedia.org/wiki/Monoidal_category
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where S2 : A(↓1 ↓2 ↓3) → A(↓1 ↑2 ↓3) is the “orientation-reversing operation” ap-
plied to the second string. (See Exercise 3.4.)

Exercise 4.1. Check the second identity in (4.3). �

Theorem 4.1 (See [BN97, Ca93, LM96, Pi95, KT98]). Fix a, u ∈ K with a+ u = 1.
There is a unique tensor-preserving functor Z : Tq → A such that

(i) Z is the canonical map Mag(+,−)→ Mon(+,−) on objects,

(ii) for γ ∈ Tq(w,w′), we have Z(γ) ∈ A(γ)Sc(γ) ⊂ A(w,w′),

(iii) for γ ∈ Tq(w,w′) and ` ∈ π0(γ), the value of Z on the q-tangle obtained
from γ by reversing the orientation of ` is S`(Z(γ)),

(iv) Z takes the following values on “elementary” q-tangles:

Z

Å (++)

(++)

ã
=

exp
(

1
2

)
∈ A

( ++

++

)
⊂ A(++,++),

Z

Å (w(w′w′′))

((ww′)w′′)

ã
= Cw,w′,w′′(Φ) ∈ A

(
↓ww′w′′ ) ⊂ A(ww′w′′, ww′w′′)

for any w,w′, w′′ ∈ Mag(+,−),

Z
(

(+−)

)
=

νa

∈ A
(

+−

)
⊂ A(∅,+−),

Z
(

(+−)
)

=
νu

∈ A
(

+−
)
⊂ A(+−,∅).

About the proof. It follows from Theorem 2.1 that Tq is generated by the morphisms

(++)

(++)

,
(++)

(++)

, (+−) , (−+) ,
(−+)

,
(+−)

,

(+)

(+)

,

(+)

(+)

,

together with all the isomorphisms (4.1) and their inverses. Observe the following:

(1) (−+) (resp.
(−+)

) is the orientation-reversal of (+−) (resp.
(+−)

);

(2)
(++)

(++)

is the inverse of
(++)

(++)

;

(3)

(+)

(+)

(resp.

(+)

(+)

) can be written in the monoidal category Tq in terms of

(−+) ,
(−+)

, and some orientation-reversals of
(++)

(++)

(resp.
(++)

(++)

)

and

(+(++))

((++)+)

.



16 GWÉNAËL MASSUYEAU

This proves the statement of unicity in the theorem.
The statement of existence in the theorem is much more difficult to establish.

Each of the relations that were alluded to in Theorem 2.1 for T can be “lifted”
to a relation in Tq. There are also all possible relations in Tq that only involve
the associativity isomorphisms (4.1); but, by Mac Lane’s coherence theorem [Ka95,
§XI.5], the pentagon identities

( ( ) )(

)(( )

( )( )

)(( )

(

( )

)

( )

)

=

)( ) )

( ) )(

( ) )(

(

( )

)(

(

(where • denotes any element of Mag(+,−)) suffice for that. Then, proving the
existence of Z consists in checking that all those relations (the relations “lifted”
from T , on the one hand, and the pentagon relations, on the other hand) translate
into algebraic identities in A.

It is easily verified that all the pentagon relations in Tq translate into conse-
quences of (4.2). It remains to prove that each relation of Tq “lifted” from T has
a counterpart in the category A. In particular, the main two axioms of a “braided
monoidal category” (which are part of the definition of a “ribbon category”)

)

=

( )( )

( ( ))

)(( )

)( )(

( ) )(

( ( ))

( )( )

)((

and =
( )( )

)(( )

)(( )

)(( )

( )( )

( )( )

)(( )

( )( )

translate into the hexagon relations that have been stated in Remark 4.1.
For further details about the combinatorial construction of the Kontsevich inte-

gral Z, one may consult [Oh02, Chapter 6]. (The parameters are taken there to be
(a, u) := (1/2, 1/2), but the arguments work equally well in the general case.) �

Exercise 4.2. Using the observation (3) in the proof of Theorem 4.1, prove that

Z

Å (+)

(+)

ã
= exp

Å
1

2

ã
and Z

Å (+)

(+)

ã
= exp

Å
− 1

2

ã
in the space A(↓) ⊂ A(+,+). �

Example 4.1. Since the unknot U is the composition of
(+−)

and (+−) in

the category Tq, we have

Z(U) = ν
(4.3)
= +

1

48
+ (deg > 2) ∈ A(↓) ∼= A(	).

It is convenient to express this series using the diagrammatic PBW isomorphism
χ : A(∗)→ A(↓) of Exercise 3.8:

χ−1Z(U) = ∅ +
1

48 * *

+ (deg > 2) ∈ A(∗).
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After that the construction of the Kontsevich integral was completed, the precise
value of Z(U) remained unknown for some time, until Bar-Natan, Le & Thurston
computed it in [BLT03]: it turns out that

χ−1Z(U) = exp
( ∑
m≥1

b2m ω2m

)
∈ A(∗)

where exp is the exponential series for the disjoint union operation, ω2m denotes
the Jacobi diagram consisting of one “wheel” with 2m “spokes”, and the modified
Bernoulli numbers b2 = 1

48 , b4 = − 1
5760 , etc. are defined as follows:∑

m≥1

b2mX
2m :=

1

2
log
( sinh(X/2)

X/2

)
∈ Q[[X]].

�

The Kontsevich integral is expected to be a very strong invariant of knots. For
instance, it is known to dominate a large family of knot invariants that have been
studied a lot in the last three decades, namely the “Reshtikhin–Turaev quantum in-
variants”. This result is known as the Drinfeld–Kohno theorem, see [Ka95, §XIX.4].

The Kontsevich integral is also known to determine the eldest knot invariant,
namely the Alexander–Conway polynomial. Specifically, let K be a knot with
Alexander–Conway polynomial ∇ := ∇(K). Since ∇ only consists of monomials of
even degrees (Exercise 1.3), there is a unique Laurent polynomial8 ∆ := ∆(K) ∈
Z[t±1] such that

∆(t2) := ∇(t− t−1).

Then Kricker proved in [Kr00] that

χ−1Z(K) = χ−1(ν) t exp
(
− 1

2
log
(
∆(eh)

)∣∣
h2m 7→ω2m

)
t
Å

Jacobi diagrams

with ≥ 2 loops

ã
.

In other words, the one-loop part of the “symmetrized” version χ−1Z(K) of the
Kontsevich integral Z(K) is tantamount to the Alexander–Conway polynomial.

Exercise 4.3. Let n ≥ 1 be an integer. An n-component bottom tangle is a tangle
B ∈ T (∅,+− · · ·+−︸ ︷︷ ︸

n times

) whose underlying polarized 1-manifold is

1
· · ·

n
.

Let L be the n-component link that is obtained from B by matching the two points
inside each pair +− of boundary points. Show that, for any choice of parentesizing
of ∂B, we have

Z(B) =

Ç
empty Jacobi diagram

on
1
· · ·

n

å
+

1

2

n∑
i,j=1

`ij tij + (deg > 1) ∈ A
(

1
· · ·

n

)
where tij consists only of one chord connecting

i
and

j
, and where we set

`ii := Fr(Li) for any i, `ij := Lk(Li, Lj) for all i 6= j. �

In order to illustrate how powerful the Kontsevich integral is, let us conclude
this section by proving Theorem 3.1 by means of Theorem 4.1.

8Clearly, we have ∆(1) = 1 and ∆(t) = ∆(t−1): this is the original version of the “Alexander
polynomial” as in [Al28], before Conway’s contribution.
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Proof of Theorem 3.1. Here, and in contrast with what we have agreed in Conven-
tions 4.1, we denote by PBn the group of unframed pure braids and by PBfr

n the
group of framed pure braids. Let {τij : 1 ≤ i < j ≤ n} be the generating system of
the group PBn found in Exercise 2.2 (2), let T := {tij : 1 ≤ i < j ≤ n} be a set of
indeterminates and let K〈T 〉 be the associative algebra freely generated by T . Of
course, there exists a unique graded algebra map

Υ : K〈T 〉 −→ GrK[PBn]

such that Υ(tij) := {τij−1} ∈ I/I2. The graded algebra GrK[PBn] is generated by
its degree one part I/I2, which is isomorphic as a vector space to the abelianization
of PBn with coefficients in K (see Exercise 3.2): therefore Υ is surjective.

We now prove that Υ factorizes through the defining relations of the Drinfeld–
Kohno algebra. For that, we need the following identity which holds true in any
group G:

(4.4) [x, y]gp − 1 = x−1y−1
(
(x− 1)(y − 1)− (y − 1)(x− 1)

)
∈ K[G];

here [x, y]gp := x−1y−1xy denotes the group commutator of any x, y ∈ G. Hence,
by an induction on k ≥ 1, we obtain the following fact: if x ∈ G is a product of
group commutators of length k, then (x− 1) ∈ K[G] belongs to Ik.

Let i, j, r, s ∈ {1, . . . , n} be such that i < j, r < s and {i, j} ∩ {r, s} = ∅. It
follows from the 1st and 3rd relations in Exercise 2.2 (4) that [τij , τrs]gp is either
trivial or is a group commutator of length 3. Hence [τij , τrs]gp−1 ∈ I3 and, by (4.4),
we obtain that Υ(tij) and Υ(trs) commute.

Let r, s, j ∈ {1, . . . , n} be such that r < s < j. Using the second relation in
Exercise 2.2 (4), we deduce from (4.4) that[

−Υ(trs),−Υ(tsj)
]
≡
[
Υ(trj),−Υ(tsj)

]
mod I3

(where [−,−] denotes algebra commutators), or equivalently, we have

(4.5)
[
Υ(trs) + Υ(trj),Υ(tsj)

]
= 0 ∈ I2/I3.

Besides, using the fourth relation in Exercise 2.2 (3), we obtain in a rather similar
way that

(4.6)
[
Υ(trs) + Υ(tsj),Υ(trj)

]
= 0 ∈ I2/I3.

Finally, combining (4.5) and (4.6), we get
[
Υ(trj) + Υ(tsj),Υ(trs)

]
= 0 ∈ I2/I3.

Thus, the map Υ induces a surjective homomorphism Υ : U(tn) → GrK[PBn].
We shall now construct an inverse of Υ using the Kontsevich integral. We start by
fixing a parenthesizing of the word + · · ·+ of length n: for instance, let us choose
the left-handed parenthesizing

wn :=
(
· · · ((++)+) · · ·+)

We identify PBn to the subgroup PBn × {0} ⊂ PBfr
n of 0-framed pure braids (see

Exercise 2.3). Hence we view PBn as a submonoid of Tq(wn, wn), so that Z restricts
to a monoid homomorphism ζ : PBn → A(↓n). Since any 0-framed pure braid can
be written in the monoidal category Tq in terms of only crossings and associativity

isomorphisms, ζ takes values in the degree-completion “U(tn) of U(tn). It follows
immediately from the definition of Z that

ζ
(
τ12

)
= exp(t12) = 1 + t12 + (deg > 1) ∈ “U(tn);
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since Φ = ϕ(t12, t23)−1 does not have degree 1 term, we deduce that

ζ(τij) = 1 + tij + (deg > 1) ∈ “U(tn)

for any i < j. It follows that the linear extension K[ζ] : K[PBn] → “U(tn) of ζ

maps the I-adic filtration of K[PBn] to the degree-filtration of “U(tn) and that,
at the level of the associated graded, we have Gr(K[ζ]) ◦ Υ = id. Hence Υ is
injective and, so, it is bijective. It follows that Gr(K[ζ]) is an isomorphism and, so,

K[ζ] : K[PBn] → “U(tn) induces an isomorphism between the I-adic completion of

K[PBn] and “U(tn).

Finally, it can be verified that the resulting isomorphism K[ζ] : ◊�K[PBn]→ “U(tn)
preserves the structures of complete Hopf algebras. In particular, it preserves the

coproduct because ◊�K[PBn] is generated by PBn as a topological vector space and
ζ(PBn) is included in the group-like part¶

x ∈ “U(tn) : x 6= 0,∆(x) = x ⊗̂x
©

of the complete Hopf algebra “U(tn). (This inclusion can be deduced from the values
that Z takes on crossings and associativity isomorphisms.) �

Remark 4.2. In this proof of Theorem 3.1, we did not need to view U(tn) as
a subalgebra of A(↓n) ⊂ A(n, n) so that we could have ignored Proposition 3.2.
In fact, the restriction of Z to PBn and its relationship with “Milnor invariants”
constitute an other way to prove Proposition 3.2: see [HM00, Remark 16.2]. �

Taking maximum advantage of the Kontsevich integral Z, one can generalize
Theorem 3.1 to the entire category T . Roughly speaking, one gets the following:

(1) there is a filtration on the monoidal category T , namely the Vassiliev–
Goussarov filtration (which generalizes the I-adic filtration on pure braid
groups);

(2) through Z, the completion of T with respect to the Vassiliev–Goussarov
filtration happens to be isomorphic to (the degree-completion of) its asso-
ciated graded;

(3) the associated graded of the Vassiliev–Goussarov filtration is a “linear sym-
metric strict monoidal category with duality and infinitesimal braiding”
(the latter structure generalizing the relations of the Drinfeld–Kohno alge-
bras) and, as such, it is freely generated by the object +.

Here we do not give precise statements (which can be found in [KT08]). Actually,
we will elaborate in the next sections variants of the above results (1), (2), (3) for
a very different category of “tangles” which still contains the set of knots K.

5. The category B of bottom tangles in handlebodies

For every integer m ≥ 0, we denote by Vm the handlebody of genus m: it is
obtained from the cube [−1,+1]3 by attaching m handles (of index 1) on the “top”
square [−1,+1]2 × {+1}:
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Vm :=

1 m

· · ·

S

~x

~y
~z

`

We call S := [−1,+1]2 × {−1} the bottom square and ` := [−1,+1] × {0} × {−1}
the bottom line of Vm.

An n-component bottom tangle in Vm is the image T = T1 ∪ · · · ∪ Tn of a proper
embedding of n copies of I into Vm whose boundary points (i.e. the images of ∂I)
are uniformly distributed along ` and numbered from left to right: then the i-th
component Ti should run from the (2i)-th boundary point to the (2i − 1)-st one.
Furthermore, following Conventions 4.1, bottom tangles are assumed to be framed:
a transverse vector field is given along each component and coincides with ~y at
every boundary point.

Example 5.1. Bottom tangles in V0 = [−1,+1]3 have been simply called “bottom
tangles” in Exercise 4.3. �

The notions of isotopy and tangle diagram are defined for bottom tangles in
handlebodies in the same way as for tangles in cubes. (See Section 2.)

Example 5.2. Here is a 3-component bottom tangle in V2 which, by projection in
the ~y direction, gives a tangle diagram:

 

�

Lemma 5.1. Let m,n ≥ 0 be integers. There is a one-to-one correspondence
(T 7→ iT ) between isotopy classes of n-component bottom tangles in Vm and isotopy
classes of embeddings Vn → Vm rel S (i.e. embeddings that fix S pointwisely).

Proof. Consider the “standard” n-component bottom tangle A in Vn:

(5.1)

A1 An
· · ·

· · ·

Given an n-component bottom tangle T in Vm, let iT : Vn → Vm be an embedding
rel S that maps Aj to Tj in a framing-preserving way for all j: since Vn deformation
retracts onto S ∪A1 ∪ · · · ∪An, the isotopy class rel S of iT is determined by that
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of T . Conversely, given an embedding i : Vn → Vm rel S, the image of A by i
defines an n-component bottom tangle in Vm: clearly, the isotopy class of i(A) only
depends on the isotopy class of i. It is easily verified that the two constructions
(T 7→ iT ) and (i 7→ i(A)) are reciprocal. �

We now define the category B of bottom tangles in handlebodies.

Proposition 5.1 (Habiro [Ha06]). There is a strict monoidal category B whose set
of objects is N and whose morphisms m→ n (for any m,n ∈ N) are isotopy classes
of n-component bottom tangles in Vm.

Proof. Let T be an n-component bottom tangle in Vm and let T ′ be a p-component
bottom tangle in Vn: we define T ′ ◦ T := iT (T ′). It is easily checked that we get a
category B with composition rule ◦, the identity morphism of any n ∈ N being the
“standard” tangle (5.1). For instance, let us check the associativity of ◦:

(T ′′ ◦ T ′) ◦ T = iT ′(T ′′) ◦ T = iT (iT ′(T ′′)) = iT ′◦T (T ′′) = T ′′ ◦ (T ′ ◦ T );

here we have used the identity

(5.2) iT ′◦T = iT ◦ iT ′

which follows from the fact that the bottom tangle in a handlebody corresponding
to iT ◦ iT ′ by Lemma 5.1 is (iT ◦ iT ′)(A) = iT (T ′) = T ′ ◦ T .

We define a bifunctor ⊗ : B × B → B as follows. At the level of objects, ⊗ is
merely the addition of integers. For any morphisms T ∈ B(m,n) and T ′ ∈ B(m′, n′),
let T⊗T ′ ∈ B(m+m′, n+n′) be the bottom tangle in Vm+m′ obtained by gluing Vm
“on the left side of” Vm′ , and “rescaling” the result to Vm+m′ . It is easily verified
that ⊗ defines a tensor product in B whose unit object is 0 ∈ N. �

Example 5.3. Here is a composition of morphisms 2→ 1→ 2 in B:

◦ =

�

We shall now give an alternative viewpoint on the category B. Let H be the
category of embeddings of handlebodies: the set of objects is N and the morphisms
n→ m (for any m,n ∈ N) are embeddings Vn → Vm rel S [Ha12]. There is a strict
monoidal structure on H, such that ⊗ is the addition of integers at the level of
objects and is given by “juxtaposition” of handlebodies at the level of morphisms.
Lemma 5.1 and the identity (5.2) show that B is isomorphic to Hop, the opposite
of the category H.

Exercise 5.1. For every n ≥ 0, we fix a free group Fn := F (x1, . . . , xn) of rank n.
Let F be the category of finitely-generated free groups: objects are non-negative
integers and morphisms n→ m are group homomorphisms Fn → Fm.

(1) By identifying Fn with π1(Vn, S), the fundamental group of Vn based at its
contractible subset S, define a full functor π1 : H → F .

(2) Let h : B → Fop be the full functor corresponding to π1 via the isomorphism
B ∼= Hop. Describe a congruence relation ∼ on B such that the quotient
category B/∼ is isomorphic to Fop through h. �
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Let C be a braided strict monoidal category9, with unit object I and braiding
ψU,V : U ⊗ V → V ⊗ U (for any objects U, V ). A Hopf algebra in C consists of an
underlying object H and some structural morphisms

µ = , η = , ∆ = , ε = ,
S =

H H

H H H H

H H H

H

I

I

that satisfy the following axioms:

= = = = = =

= ∅ = = =

= =

, , ,

, , ,

.

,

,

In the above diagrams, morphisms in C should be read from top to bottom. For
instance, the penultimate diagram reads ∆ ◦ µ = µ⊗2 ◦ (idH ⊗ψH,H ⊗ idH) ◦∆⊗2,
and it is the only one involving the braiding ψ. The Hopf algebra H is commutative
(resp. cocommutative) if µ ◦ ψH,H = µ (resp. if ψH,H ◦∆ = ∆).

Example 5.4. The most frequent examples of Hopf algebras arise in symmetric
monoidal categories C, i.e. braided monoidal categories C whose braiding ψ satisfies
ψV,U ◦ ψU,V = idU⊗V for any U, V . Assume for instance that C is the category of
vector spaces with braiding

U ⊗ V −→ V ⊗ U, u⊗ v 7−→ v ⊗ u.

(for any vector spaces U and V ). Then a “Hopf algebra in C” is a Hopf algebra
in the usual sense (as recalled in Exercise 3.1). Examples of cocommutative Hopf
algebras include algebras K[G] of groups G, while commutative algebras are given
by coordinate algebras of group schemes. �

Proposition 5.2 (Habiro [Ha06]). The strict monoidal category B is braided with
braiding given by

(5.3) ψp,q :=

p︷ ︸︸ ︷ q︷ ︸︸ ︷
· · · · · ·

· · · · · ·

(for any p, q ∈ N). Furthermore, it has a Hopf algebra H ′ with underlying object 1
and with structural morphisms

µ′ := , η′ := , ∆′ := , ε′ := , S′ := .

9 The definition of a braided monoidal category may be found at https://en.wikipedia.org/

wiki/Braided_monoidal_category, for instance.

https://en.wikipedia.org/wiki/Braided_monoidal_category
https://en.wikipedia.org/wiki/Braided_monoidal_category


KNOTS, CATEGORIES OF TANGLES AND THE KONTSEVICH INTEGRAL 23

About the proof. Verifying the axioms of a braided category is pretty easy; verifying
the axioms of a Hopf algebra is a straightforward and instructive exercise. �

Exercise 5.2. Let h : B → Fop be the functor given in Exercise 5.1.

(1) Show that h transports the braiding ψ of B to a symmetric braiding h(ψ)
on F , and the Hopf algebra H ′ to a commutative Hopf algebra h(H ′) in F .

(2) Prove that, as a symmetric strict monoidal category, F is generated by the
Hopf algebra h(H ′)10, meaning that every morphism in F is obtained from
the structural morphisms of h(H ′) (and from the braiding h(ψ)) by finitely
many compositions and tensor products. �

Exercise 5.3. Establish a one-to-one correspondence between the set B(0, 1) of
bottom knots and the set K of knots. How does the monoid structure of K (as dis-
cussed in Exercise 1.4) translate in Hopf-algebraic terms in B? �

In the rest of this section, we present yet another viewpoint on the categories
B ∼= Hop. For any m ≥ 0, let Σm,1 be the (compact, connected, oriented) surface
of genus m with one boundary component that is located at the top of Vm ⊂ R3:

Σm,1 :=

1 m

· · ·

	

A cobordism from Σm,1 to Σn,1 is a pair (C, c) consisting of a (compact, connected,
oriented) 3-manifold C and an orientation-preserving homeomorphism

c :
Ä
(−Σn,1) ∪ ×{−1} ( × [−1,+1]) ∪ ×{+1} Σm,1

ä
−→ ∂C

where we identify ∂Σm,1 (resp. ∂Σn,1) with := ∂([−1,+1]2). Two cobordisms
(C, c) and (C ′, c′) are equivalent if there is a diffeomorphism f : C → C ′ such that
c′ = f |∂C ◦ c.

Example 5.5. The handlebody Vm can be viewed as a cobordism from Σm,1
to Σ0,1. More generally, every n-component bottom tangle T in Vm defines a
cobordism

(ET , eT )

from Σm,1 to Σn,1 where ET := Vm \ Neigh(S ∪ T ) is the exterior of a regular
neighborhood of S ∪ T and eT is the boundary parametrization induced by the
framing of T . �

We now define the category Cob of 3-dimensional cobordisms.

Proposition 5.3 (Crane & Yetter [CY99] and Kerler [Ke97]). There is a strict
monoidal category Cob whose set of objects is N and whose morphisms m→ n (for
any m,n ∈ N) are equivalence classes of cobordisms from Σm,1 to Σn,1.

10 In fact, it is known that F is the symmetric strict monoidal category freely generated by a

commutative Hopf algebra: in other words, a presentation of F is given by the above-mentioned
morphisms as generators, and the sole axioms of a commutative Hopf algebra (together with the

axioms of a symmetric strict monoidal category) as relations [Pi02].
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Proof. Let C be a cobordism from Σm,1 to Σn,1 and let C ′ be a cobordism from
Σn,1 to Σp,1: we define C ′ ◦ C as the cobordism from Σm,1 to Σp,1 obtained by
identifying the target surface of C with the source surface of C ′ using the boundary
parametrizations. This defines a category Cob with composition rule ◦, the identity
morphism of any m ∈ N being the cylinder Σm,1 × [−1,+1] (whose boundary
parametrization is defined by the identity maps).

We define a bifunctor ⊗ : B × B → B as follows. At the level of objects, ⊗ is
merely the addition of integers. For any two morphisms C ∈ Cob(m,n), C ′ ∈
Cob(m′, n′), let C⊗C ′ be the cobordism obtained by identifying the “right” square
c({+1} × [−1,+1]2) of ∂C with the “left” square c′({−1} × [−1,+1]2) of ∂C ′. �

A cobordism C from Σm,1 to Σn,1 is special Lagrangian if we have Vn ◦C = Vm :
m→ 0. Special Lagrangian cobordisms form a monoidal subcategory sLCob of Cob,
which has been introduced in [CHM08]. There is an isomorphism B ∼= sLCob of
strict monoidal categories which, for any m,n ≥ 0, is given by

B(m,n)
∼=−→ sLCob(m,n)

(T ⊂ Vm) 7−→ ET(
A ⊂ (Vn ◦ C)

)
7−→ C;

here the exterior ET of a bottom tangle T ⊂ Vm is defined in Example 5.5 and A
is the “standard” bottom tangle (5.1) in Vn. Thus the categories B ∼= Hop can be
viewed as subcategories of Cob. With this viewpoint, Proposition 5.2 appears in
[CY99, Ke97].

Exercise 5.4. Given a manifold P and a submanifold Q ⊂ P , the mapping class
group of P rel Q is the group of isotopy classes of diffeomorphisms P → P rel Q (i.e.
diffeomorphisms that fix Q pointwisely); here two diffeomorphisms h0, h1 : P → P
rel Q are said to be isotopic if there is H : P × I → P such that H(−, i) = hi for
i ∈ {0, 1} and H(−, t) : P → P is a diffeomorphism rel Q for all t ∈ I. Let n ∈ N.

(1) Show that the automorphism group of the object n in H is isomorphic to
the handlebody group Hn, i.e. the mapping class group of Vn rel S.

(2) Denote byMn,1 the mapping class group of Σn,1 rel ∂Σn,1. Using the “map-
ping cylinder” construction, define a monoid map cyl :Mn,1 → Cob(n, n).

(3) Assuming that11 cyl is an isomorphism onto the automorphism group of the
object m in Cob, show that Hn can be regarded as a subgroup of Mn,1. �

6. Jacobi diagrams in handlebodies

Recall that, for any integer m ≥ 0, we denote by Vm the handlebody of genus m.
Besides, for every integer n ≥ 0, let

Xn := 1 · · · n

be the oriented 1-manifold consisting of n intervals.

Definition 6.1. Let m,n ≥ 0. An (m,n)-Jacobi diagram is a homotopy class rel
∂Xn of maps D : Xn ∪ J → Vm, where J is the underlying graph of a Jacobi
diagram on Xn and the points of ∂Xn are uniformly distributed along ` ⊂ Vm. �

11This is proved in [HM12, Proposition 2.4] for instance.
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Since Vm deformation retracts onto the square with m handles (of index 1)

(6.1) Sm := Vm ∩ (R× {0} × R),

we can represent (m,n)-Jacobi diagrams by projecting their images onto Sm. We
only allow transverse double points in such projections, and these crossings do not
have “over/under” informations (in contrast with projection diagrams of bottom
tangles in handlebodies).

Example 6.1. Here is a (2, 3)-Jacobi diagram given by a projection diagram in S2:

D :=

The “source” Jacobi diagram of D is the following Jacobi diagram on X3:

1 32 �

We now define the category of Jacobi diagrams in handlebodies.

Proposition 6.1. There is a linear strict monoidal category A whose set of objects
is N and whose morphisms m → n (for any m,n ∈ N) are linear combinations of
(m,n)-Jacobi diagrams modulo the STU relation.

Sketch of proof. We shall define the composition law ◦ of A using projection di-
agrams in squares with handles. For this, we need the box notation which is a
convenient way to represent certain types of linear combinations of Jacobi dia-
grams:

:= −
· · · · · · · · · · · · · · ·

± · · ·++

Here, dashed edges and solid arcs are allowed to go through the box, and each of
them contributes to one summand in the box notation; a solid arc contributes with
a + or a −, depending on the compatibility of its orientation with the direction
of the box; a dashed edge always contributes with a +, the orientation of the new
trivalent vertex being determined by the direction of the box. Besides we set

· · ·

:=

· · ·

so that = −

· · · · · ·

.

Let D : Xn ∪J → Vm be an (m,n)-Jacobi diagram and D′ : Xp ∪J ′ → Vn be an
(n, p)-Jacobi diagram; we consider a projection diagram P ′ ⊂ Sn of D′ showing no
vertices of J ′ inside the handles, and we pick any projection diagram P ⊂ Sm of D;
every univalent vertex in P is replaced by a box, whose direction is prescribed by
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the orientation of the corresponding component of Xn; next, we consider a map
g : Sn → Sm which, for every i ∈ {1, . . . , n}, carries the i-th handle of Sn onto
the i-th solid component of P , and we assume that the images of these n handles
are sufficiently “narrow” to pass through the boxes that we have created in P ;
then, by applying the box notation, the image g(P ′) can be interpreted as a linear
combination D′ ◦D of (m, p)-diagrams. Here is an example:

D′ = , D = .

D′ ◦D = .

Checking that the operation ◦ is well-defined by the above procedure, and verifying
that it is associative and compatible with the STU relation, needs another descrip-
tion of ◦: see [HM17, §4.1 & §4.2]. For every m ∈ N, the identity of the object m
in this category A is

1 n
· · ·

· · ·
.

We define a bifunctor ⊗ : A × A → A using, again, projection diagrams in
squares with handles. At the level of objects, ⊗ is merely the addition of integers.
For a D ∈ A(m,n) with projection diagram P ⊂ Sm, and a D′ ∈ A(m′, n′) with
projection diagram P ′ ⊂ Sm′ , let D ⊗ D′ ∈ A(m+m′, n+ n′) be given by the
projection diagram that results from identifying the “right edge” of Sm with the
“left edge” of Sm′ and “rescaling” the result to Sm+m′ . It is easily verified that ⊗
defines a tensor product in A with unit object 0 ∈ N. �

Exercise 6.1. Let D be a strict monoidal category, and let C be a linear strict
monoidal category. We say that C is graded over D if we are given a monoid homo-
morphism i : Ob(C)→ Ob(D) between objects, and a direct sum decomposition

C(m,n) =
⊕

d∈D(i(m),i(n))

C(m,n)d

on morphisms (for all m,n ∈ Ob(C)), such that

• idm ∈ C(m,m)idi(m)
for each m ∈ Ob(C),

• C(n, p)e ◦ C(m,n)d ⊂ C(m, p)e◦d for all m,n, p ∈ Ob(C) and all morphisms

i(m)
d−→ i(n)

e−→ i(p) in D,
• C(m,n)d ⊗ C(m′, n′)d′ ⊂ C(m⊗m′, n⊗ n′)d⊗d′ for all m,n,m′, n′ ∈ Ob(C)

and all morphisms d : i(m)→ i(n), d′ : i(m′)→ i(n′) in D.

Show that the linear strict monoidal category A has the following structures:
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(1) A is graded over N (viewed as a category with a single object) by means
of the degree of Jacobi diagrams (defined at page 10);

(2) A is graded over Fop, where F is the category of finitely-generated free
groups (defined in Exercise 5.1);

(3) A0 (the degree 0 part of A for the grading over N) and KFop (the lineariza-
tion of the category Fop) are isomorphic as linear monoidal categories. �

The definition of the category A may look somehow sophisticated at a first
glance. Thus, we will now provide a universal property that characterizes A.

Definition 6.2. Let C be a linear symmetric strict monoidal category with unit
object I. A Casimir–Hopf algebra in C is a cocommutative Hopf algebra H together
with a morphism

c = : I −→ H ⊗H
such that

(6.2)

= + ,

= , = .

�

Exercise 6.2. Let U(g) be the universal enveloping algebra of a Lie algebra g.

(1) Show that there is a unique Hopf algebra structure on U(g) such that the
underlying algebra structure is the usual one, and the coproduct ∆ is given
by ∆(g) = g ⊗ 1 + 1 ⊗ g for any g ∈ g. How are the counit ε and the
antipode S defined?

(2) Assuming that g is finite-dimensional, prove that any non-degenerate sym-
metric bilinear form

b : g× g −→ K
which is ad-invariant ( i.e. ∀g, h, k ∈ g, b([g, h], k) = b(g, [h, k]) ) defines a

cb ∈ g⊗ g ⊂ U(g)⊗ U(g) ∼= Hom
(
K, U(g)⊗ U(g)

)
such that

(
U(g), cb

)
is a Casimir–Hopf algebra in the symmetric monoidal

category of vector spaces. �

Theorem 6.1. The linear strict monoidal category A is symmetric with braiding

(6.3) ψp,q :=

p︷ ︸︸ ︷ q︷ ︸︸ ︷
· · · · · ·

· · · · · ·

(for any p, q ∈ N), and A has a Casimir–Hopf algebra (H, c) with underlying ob-
ject 1 and with structural morphisms

η := , µ := , ε := , ∆ := , S := ,

c := .
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Furthermore, for any Casimir–Hopf algebra (H ′, c′) in any linear symmetric strict
monoidal category C′, there is a unique functor F : A → C′ that preserves the
symmetric monoidal structures and maps (H, c) to (H ′, c′).

About the proof. Verifying the axioms of a symmetric strict monoidal category and
verifying the axioms of a Casimir–Hopf algebra is straightforward: see the proof
of [HM17, Proposition 5.10]. But, the universal property of A is more difficult to
establish: see [HM17, §5.7–§5.12]. �

The universal property of A can be stated in the following equivalent way: as
a linear symmetric strict monoidal category, A is freely generated by a Casimir–
Hopf algebra. Said explicitly, the category A has the following presentation: every
morphism in A is obtained from the structural morphisms of (H, c) (and the braid-
ing ψ) by finitely many compositions and tensor products, and the sole axioms of
a Casimir–Hopf algebra (together with the axioms of a symmetric strict monoidal
category) constitute a complete set of relations for those generators.

Example 6.2. Let g be a finite-dimensional Lie algebra12 with a non-degenerate
ad-invariant symmetric bilinear form b : g × g → K as in Exercise 6.2. Then,
Theorem 6.1 produces a functor

W(g,b) : A −→ K-Vect,

called the weight system of (g, b), which changes Jacobi diagrams into tensors. �

Exercise 6.3. Using Exercise 6.1(3), deduce from Theorem 6.1 the universal prop-
erty of F that has been mentioned in a footnote of page 23: KF is the linear
symmetric strict monoidal category freely generated by a commutative Hopf alge-
bra [Pi02]. �

7. The extended Kontsevich integral Z

In this last section, we explain how to extend the Kontsevich integral to the
category B. This extension is valued in the degree-completion of the category A
(which, for simplicity, we still denote by A), and it is defined on a slight refinement
of the category B (which we now introduce).

Let Mag(•) be the magma freely generated by the single symbol “•”. For in-
stance, ∅, (••), (•(••)) and ((••)•) are elements of Mag(•). Denote by | · | :
Mag(•)→ N the length function. The refinement of B that we need is the category
Bq of bottom q-tangles in handlebodies, whose set of objects is Mag(•) and whose
morphisms w → w′ are morphisms |w| → |w′| in B for any w,w′ ∈ Mag(•).
Example 7.1. The following bottom tangle in a handlebody

∈ B(3, 3)

is viewed as a bottom q-tangle in a handlebody

)

( )( )

( )(

∈ Bq
(
(•(••)), ((••)•)

)
12For instance, g could be a semi-simple Lie algebra with its Cartan–Killing form b.
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by choosing a parenthesization of the handles and a parenthesization of the pairs
of boundary points. �

Recall from Theorem 4.1 that the usual Kontsevich integral needs to choose a
Drinfeld associator ϕ ∈ K〈〈X,Y 〉〉 and to fix two scalars a, u ∈ K such that a+u = 1.
Here we set a := 0 and u := 1.

Theorem 7.1. There is a tensor-preserving functor

Z : Bq −→ A

which is given by | · | : Mag(•) → N at the level of objects and which extends the
usual Kontsevich integral.

Here, by an “extension” of the usual Kontsevich integral, we mean two things. On
the one hand, for any w ∈ Mag(•), we have a commutative diagram

(7.1) Bq(∅, w)

Z

��

� � // Tq
(
∅, w(+−)

)
Z

��

A(0, |w|) �
�

// A
(
∅, (+−)n

)
where w(+−) ∈ Mag(+,−) is obtained from w by replacing each • with (+−), and
(+−)n ∈ Mon(+,−) is +− repeated n times. On the other hand, the construction of
the functor Z : Bq → A (which is sketched below) involves the functor Z : Tq → A.

About the proof of Theorem 7.1. Let T ∈ Bq(v, w) with m := |v| and n := |w|: we
define Z(T ) ∈ A(m,n) as follows. First of all, we choose a projection diagram of T

T = · · ·
u′
m

· · ·
um

· · ·
u1 u′

1

· · ·

· · ·

· · ·

T0

T1 Tm

,(7.2)

which is composed of some q-tangles T0 ∈ Tq(ṽ, w(+−)) and Ti ∈ Tq(∅, uiu′i) for
i ∈ {1, . . . ,m} such that

• u1, u
′
1, . . . , um, u

′
m ∈ Mag(+,−),

• ṽ is obtained from v by replacing itsm consecutive •’s by (u1u
′
1), . . . , (umu

′
m)

in this order, and w(+−) is obtained from w by replacing each • with (+−).

Then we set

Z(T ) := · · ·
u′
m

· · ·
um

· · ·
u1 u′

1

· · ·

· · ·

· · ·

Z(T0)

Z(T1) Z(Tm)

.(7.3)
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One has to prove that (7.3) does not depend on the choice of the projection dia-
gram (7.2) of T and, next, one has to prove the functoriality: this is proved using
another equivalent description of Z(T ) which involves the “cabling anomaly” of the
usual Kontsevich integral. The reader is refered to [HM17, §8].

Note that the property of Z : Bq → A to preserve the tensor products and the
commutativity of (7.1) follow immediately from the definition (7.3). �

Remark 7.1. The definition (7.3) of the invariant Z(T ) of tangles T in han-
dlebodies is similar to the definition of the Kontsevich integral of links in thick-
ened surfaces given by Andersen, Mattes & Reshetikhin [AMR98], and revisited by
Lieberum [Li04]. Indeed, the handlebody Vm can be viewed as the thickening of
the surface (6.1). The main novelty in Theorem 7.1 is the functoriality of this kind
of constructions. �

Exercise 7.1. Consider the braided Hopf algebra H ′ of Proposition 5.2 and show
that Z takes the following values on the structural morphisms of H ′:

Z(η) = , Z(ε) = ,

Z(µ) = +
1

24
+

1

48

− 1

48
− 1

48
+ (deg ≥ 3),

Z(∆) = − 1

2
+

1

8

+
1

48
− 1

12
+

1

24

+
1

24
+

1

24
+ (deg ≥ 3),

Z(S±1) = ± 1

2
∓ 1

2

+
1

8
− 1

4
+

1

8
+ (deg ≥ 3).

�
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We now recall some terminology which applies to any linear monoidal category C
and can be found in [KT98, §3.3]. An ideal I of C consists of a family of linear
subspaces I(v, w) ⊂ C(v, w) for all v, w ∈ Ob(C) such that f ⊗ g, f ◦ g ∈ I for any
morphisms f, g ∈ C whenever f ∈ I or g ∈ I. A filtration F in C is a sequence

(7.4) C = F0 ⊃ F1 ⊃ · · · ⊃ Fk ⊃ Fk+1 ⊃ · · ·

of ideals of C such that Fk ◦F l ⊂ Fk+l for all k, l ≥ 0. (Consequently, we also have
Fk ⊗F l ⊂ Fk+l for all k, l ≥ 0.) The associated graded of the filtration (7.4)

Gr C =
⊕
k≥0

Fk/Fk+1

is a monoidal category graded over N (in the sense of Exercise 6.1). The product J I
of two ideals I,J ⊂ C is the ideal generated by all morphisms gf for all composable
g ∈ J , f ∈ I. For an ideal I ⊂ C, the I-adic filtration C = I0 ⊃ I1 ⊃ I2 ⊃ · · ·
of C is defined inductively by I0 = C and Ik+1 = IIk.

This terminology fixed, we now define a filtration on the linearization KB of the
category B. Given a T ∈ B(m,n) and a finite set D of pairwise-disjoint disks in a
projection diagram of T where each disk is of the form

, , or ,

we set

[T ;D] :=
∑
C⊂D

(−1)]C · TC ∈ KB(m,n)

where TC is obtained from T as follows:

T :

TC :

, , ,7→ 7→ 7→ 7→

Then, for any integersm,n ≥ 0, we can consider the following subspace of KB(m,n):

Vk(m,n) :=
〈

[T ;D]
∣∣T ∈ B(m,n), D as above with ]D = k

〉
.

The Vassiliev–Goussarov filtration is the decreasing sequence V given by

KB = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ Vk+1 ⊃ · · ·

Indeed, it is a filtration of the linear monoidal category KB and it turns out that

(7.5) Vk = J k

for all k ≥ 0, where J is the ideal generated by

r+ − η ∈ KB(0, 1) where r+ := ∈ B(0, 1).

(We refer to [HM17, Proposition 10.1] for a proof.) Note that the Vassiliev–
Goussarov filtration also makes sense on KBq, and it is then denoted by Vq.

Theorem 7.2. The functor Z : Bq → A maps Vq to the degree-filtration, and it
induces an isomorphism GrKB ∼= A on the associated graded.
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Sketch of proof. Using (7.5) and using the functoriality of Z, one can deduce that
Z(Vk) ⊂ A≥k for any k ≥ 0 from the following easy computation :

Z(r+ − η) = −1

2
+ (deg ≥ 2) ∈ A(0, 1)

Thus, Z is filtration-preserving and we can consider GrZ : GrKB → A.
We now construct an inverse to GrZ. Recall from Proposition 5.2 that B is a

braided monoidal category with a Hopf algebra H ′. It can be verified that this
structure simplifies as follows when passing to the associated graded:

• the braiding in B induces a braiding on GrKB which is symmetric and
concentrated in degree 0;

• the Hopf algebra H ′ in B defines a Hopf algebra H ′ in GrKB which is
cocommutative and concentrated in degree 0.

Furthermore, it can be shown that the degree 1 morphism

c′ :=
(

−
)
∈ V

1(0, 2)

V2(0, 2)

satisfies (6.2) in GrKB: therefore, (H ′, c′) is a Casimir–Hopf algebra in GrKB. It
follows from Theorem 6.1 that there is a unique functor

F : A −→ GrKB
that preserves the symmetric monoidal structures and maps (H, c) to (H ′,−c′).
One can conclude by showing that GrZ ◦ F is the identity of A and that F is a
full functor. See [HM17, §10.4]. �

Remark 7.2. We can also consider the completion of the Vassiliev–Goussarov
filtration of Bq: ‘KBq = lim←−

k

KBq/Vk.

It can be deduced from Theorem 7.2 that ‘KBq is isomorphic to the degree-completion
of its associated graded, namely ∏

k≥0

Vkq /Vk+1
q .

Moreover, this associated graded is isomorphic to Aq (which denotes the non-
strict monoidal category resulting from A when the set of objects N is replaced by
Mon(•)). Thus we can view Theorem 7.2 as a kind of “formality result” for the
filtered non-strict monoidal category Bq. �

To conclude these lecture notes, let us mention two other properties of the functor
Z : Bq → A that the reader may also find in [HM17]:

(1) Using the Drinfeld associator ϕ, one can transform the Hopf algebra H
in A to a ribbon quasi-Hopf algebra Hϕ in A: this can be regarded as
a “diagrammatic” version of the construction of Drinfeld in [Dr90] (see
[Ka95, Theorem XIX.4.2]). Besides, one can use ϕ to transform A into a
braided non-strict monoidal category Aϕ

q such that Z : Bq → Aϕ
q turns into

a braided monoidal functor. Therefore Z maps the Hopf algebra H ′ in Bq
to a Hopf algebra Z(H ′) in Aϕ

q : it turns out that Z(H ′) results from Hϕ

by Majid’s “transmutation” process [Ma94, Ma95, Kl09]. See [HM17, §9].
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(2) When Bq is identified to the category sLCobq of special Lagrangian q-
cobordisms, the functor Z : sLCobq → A determines the LMO functor
of [CHM08]. This functor is actually defined on the category of Lagrangian
q-cobordisms LCobq, which is much larger than sLCobq, but its definition is
more complicated since it involves surgery techniques. See [HM17, §11].

Since, by its very definition, the functor Z : Bq → A is accountable for the
fundamental groups of handlebodies, further applications of Z can be expected
in quantum topology and low-dimensional topology: see [HM17, §12] for some
perspectives.
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