
A SHORT INTRODUCTION TO
THE ALEXANDER POLYNOMIAL

GWÉNAËL MASSUYEAU

Abstract. These informal notes accompany a talk given in Grenoble for the work-
shop “Représentations de Uq(sl2) et invariants d’Alexander” (December 2008). We
introduce the Alexander polynomial of links following Milnor and Turaev, who inter-
preted this classical invariant as a kind of Reidemeister torsion. As shown by Turaev,
this approach allows for an intrinsic construction of the Conway function of links,
which is a refinement of the Alexander polynomial.
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1. Introduction

James Alexander introduced his link invariant in the paper [1] published in 1928. Since
then, the Alexander polynomial has been extensively studied by hundreds of authors,
and several fundamental properties of the Alexander polynomial have been shown. See
any of the classical references in knot theory, including [16] and [3].

The Alexander polynomial of a link is defined up to some indeterminacy. In 1967,
John Conway introduced in [5] a refinement of the Alexander polynomial and explained
how to compute it recursively using some additive relations of a local nature (which are
nowadays called “skein relations”). Conway’s approach was fixed by Louis Kauffman in
the one-variable case [10] and by Richard Hartley in the multi-variable case [9]. But,
those two constructions of the Conway function are extrinsic. (Kauffman needs a Seifert
surface for the link, while Hartley needs a diagram presentation of the link.)

In 1962, John Milnor noticed in [11] a very close connection between the Alexander
polynomial of a link and a certain kind of Reidemeister torsion. This new viewpoint
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on the Alexander polynomial clarified its properties, among which its symmetry. This
approach to study the Alexander polynomial was systematized by Vladimir Turaev in
[20], where he re-proved most of the known properties of the Alexander polynomial of
links using general properties of the Reidemeister torsion. In the same paper, Turaev
introduced a sign-refinement of the Reidemeister torsion, thanks to which he gave the
first intrinsic definition of the Conway function.

This talk is intended to introduce the Alexander polynomial and its refinement, the
Conway function, following Milnor and Turaev’s approach via Reidemeister torsions.
For further reading, we recommand the book [22] which we used to prepare this talk.

2. The Alexander function

The Alexander function is a homotopy invariant which takes the form of a rational
fraction, and whose numerator contains the Alexander polynomial as a factor. We
introduce the Alexander function in the classical way, i.e. by homological methods.

2.1. The order of a module. Let R be a unique factorization domain. We denote by
R× the group of invertible elements of R and by Q(R) the field of fractions of R.

Let M be a finitely generated R-module. We choose a presentation of M with, say,
n generators and m relations, and we denote by A the corresponding m× n matrix:

Rm
·A−→ Rn −→M −→ 0.

Here, m may be infinite. Besides, we can assume that m ≥ n with no loss of generality.

Definition 2.1. For each integer k ≥ 0, the k-th elementary ideal of M is

Ek(M) := 〈(n− k)-minors of A〉ideal ⊂ R
with the convention that Ek(M) := R if k ≥ n. The k-th order of M is

∆k(M) = gcdEk(M) ∈ R/R×.
The order of M is ∆0(M) and is denoted by ord(M).

It is easily checked that the elementary ideals and, a fortiori, their greatest common
divisors, do not depend on the choice of the presentation matrix A. We have the following
inclusions of ideals

E0(M) ⊂ E1(M) ⊂ · · · ⊂ En−1(M) ⊂ En(M) = En+1(M) = · · · = R,

hence the following divisibility relations:

1 = · · · = ∆n+1(M) = ∆n(M) | ∆n−1(M) | · · · | ∆1(M) | ∆0(M) = ord(M).

Example 2.2. Let R be a principal ideal domain. Then, M can be decomposed as a
direct sum of cyclic modules

M = R/n1R⊕ · · · ⊕R/nkR
and the order of M is represented by the product n1 · · ·nk. �

A topologist may think of the order of a finitely generated module M as follows.
There is a “primary obstruction” to the nullity of M which is

rank(M) := dim(Q(R)⊗RM) ∈ N0.

The rank is additive in the sense that

rank(M1 ⊕M2) = rank(M1) + rank(M2)
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so that the vanishing of this obstruction means “rank(M) = 0.” Next, one observes that

(rank(M) = 0)⇐⇒ (ord(M) 6= 0) .

Thus, when the “primary obstruction” rank(M) vanishes, there is a “secondary obstruc-
tion” to the nullity of M which is

ord(M) ∈ (R \ {0}) /R×.
It can be checked that the order is multiplicative in the sense that

ord(M1 ⊕M2) = ord(M1) · ord(M2)

so that the vanishing of this obstruction means “ord(M) = 1.”

Remark 2.3. If R is not a principal ideal domain, there are further obstructions to the
nullity of M . For instance, the module

M = Z[x, y]/〈x− 1, y − 1〉ideal

over the ring R = Z[x, y] has order 1 although it is not zero. �

2.2. The Alexander function of a finite connected CW-complex. Let X be a
topological space which has the homotopy type of a finite connected CW-complex. Then,
the free abelian group

H := H1(X; Z)/TorsH1(X; Z)
is finitely generated. We observe that

Z[H] ' Z[t±1 , . . . , t
±
b ]

where b = b1(X) is the first Betti number of X, so that the ring Z[H] has essentially
the same properties as a polynomial ring with integer coefficients. In particular, Z[H]
is a unique factorization domain and it is noetherian. Moreover, we have Z[H]× = ±H.

We are interested in the maximal free abelian covering of X

X̂
p−→ X

whose group of covering automorphisms is identified with H. More precisely, we are
interested in the homology of X̂ as a Z[H]-module. By our assumptions, the Z[H]-
module Hi(X̂; Z) is finitely generated for any i ≥ 0. Thus, we can compute the “primary
obstruction” to its nullity

rankHi(X̂; Z) ∈ N0

and, if this vanishes, we can compute the “secondary obstruction” to its nullity

ordHi(X̂; Z) ∈ (Z[H] \ {0}) /±H.

Definition 2.4. The Alexander function of X is

A(X) :=
∏
i≥0

(
ordHi(X̂; Z)

)(−1)i+1

∈ Q(Z[H])/±H

with the convention that A(X) := 0 if ordHi(X̂; Z) = 0 for some i ≥ 0.

The highest and lowest degree terms of A(X) are easily computed.

Lemma 2.5. Assume that X has the homotopy type of a finite connected CW-complex
of dimension d, and assume that A(X) 6= 0. Then, ordHi(X̂; Z) = 1 for all i ≥ d, and

ordH0(X̂; Z) =
{

1 if b1(X) ≥ 2
t− 1 if b1(X) = 1 and H = 〈t〉.
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Proof. Let K be a finite connected CW-complex of dimension d sharing its homotopy
type with X. Then, for all i > d, it is obvious that Hi(K̂; Z) = 0 so that ordHi(X̂; Z) =
1. As for Hd(X̂; Z), we can regard it as the kernel of the boundary operator ∂d :
Cd(K̂) → Cd−1(K̂), where C(K̂) denotes the cellular chain complex of K̂. We deduce
that Hd(X̂; Z) is a free Z[H]-module. Since its rank is 0 by assumption, Hd(X̂; Z) is
trivial.

On the other side, since X̂ is arc-connected, we have H0(X̂; Z) ' Z and H acts
trivially on it. Thus, the Z[H]-module H0(X̂; Z) has a unique generator x (the homology
class of one point), and has one relation for each element h of H, namely the relation
(h− 1) · x = 0. We deduce that

ordH0(X̂; Z) = gcd{h− 1|h ∈ H}

and the conclusion follows. �

The degree 1 term of A(X) deserves a particular name since it only depends on the
fundamental group of X. Indeed, the Hurewicz theorem gives a canonical isomorphism

H1(X̂; Z) ' π1(X)′/[π1(X)′, π1(X)′]

where π1(X)′ is the kernel of the canonical epimorphism π1(X)→ H.

Definition 2.6. The Alexander polynomial of X is

∆X := ord
(
π1(X)′/[π1(X)′, π1(X)′]

)
∈ Z[H]/±H

where H ' π1(X)/π1(X)′ acts on π1(X)′/[π1(X)′, π1(X)′] by conjugation.

Here is a recipe to compute the Alexander polynomial. Let F(x1, . . . , xn) be the
group freely generated by x1, . . . , xn. For all i = 1 . . . , n, there is a unique group
homomorphism

∂

∂xi
: Z[F(x1, . . . , xn)] −→ Z[F(x1, . . . , xn)]

which is a derivation in the sense that

∀v, w ∈ F(x1, . . . , xn),
∂vw

∂xi
=

∂v

∂xi
+ v · ∂w

∂xi
,

and which satisfies

∀j = 1, . . . , n,
∂xj
∂xi

= δi,j .

The maps ∂
∂x1

, . . . , ∂
∂xn

are called Fox’s free derivatives [6].

Theorem 2.7 (Fox [7]). Consider a finite presentation of π1(X)

(2.1) π1(X) = 〈x1, . . . , xn|r1, . . . , rm〉

and the corresponding Alexander matrix defined by

A :=


∂r1
∂x1

· · · ∂r1
∂xn

...
. . .

...
∂rm
∂x1

· · · ∂rm
∂xn

 .

Then, we have

∆X = gcd
{

(n− 1)-minors of the reduction of A to Z[H]
}
∈ Z[H]/±H.



5

Sketch of proof. Let Y be the 2-dimensional cellular realization of the group presentation
(2.1). More explicitely, Y has a unique 0-cell, n 1-cells (in bijection with the generators
x1 . . . , xn) and m 2-cells (in bijection with the relations r1, . . . , rm which are interpreted
as attaching maps for the 2-cells). Then, π1(Y ) has the same presentation (2.1) as the
group π1(X). Since ∆X only depends on π1(X), we have

∆X = ∆Y = ordH1(Ŷ ; Z).

It follows from the topological interpretation of Fox’s free derivatives [6] that A reduced
to Z[π1(Y )] is the matrix of the boundary operator of the universal covering Ỹ of Y

∂2 : C2(Ỹ ) −→ C1(Ỹ )

with respect to some appropriate basis (which are obtained by lifting the cells of Y ).
Let Ŷ be the maximal free abelian covering of Y , and let Ŷ 0 be its 0-skeleton. Because

Coker
(
∂2 : C2(Ŷ ) −→ C1(Ŷ )

)
= H1(Ŷ , Ŷ 0),

that topological interpretation of the matrix A leads to

(2.2) gcd
{

(n− 1)-minors of the reduction of A to Z[H]
}

= ∆1

(
H1(Ŷ , Ŷ 0)

)
.

The exact sequence of Z[H]-modules

0→ H1(Ŷ ) −→ H1(Ŷ , Ŷ 0) −→ H0(Ŷ 0) −→ H0(Ŷ )→ 0

shows that TorsH1(Ŷ ) = TorsH1(Ŷ , Ŷ 0) and that rankH1(Ŷ ) = rankH1(Ŷ , Ŷ 0)− 1.

Fact 2.8 (Blanchfield [2]). Let M be a finitely generated module over a noetherian
unique factorization domain. Then, we have

∆i(M) =
{

0 if i < rank(M)
∆i−rankM (TorsM) if i ≥ rank(M).

We deduce that ∆0

(
H1(Ŷ )

)
= ∆1

(
H1(Ŷ , Ŷ 0)

)
and the conclusion then follows from

equation (2.2). �

2.3. The Alexander function of a link. Let L be a b-component link in S3. We
assume that L is ordered (i.e. the connected components of L are numbered from 1 to
b) and that L is oriented (i.e. each connected component Li of L is oriented).

We apply the previous subsection to the exterior of the link L in S3, namely to

XL := S3 \ int N(L)

where N(L) is a closed regular neighborhood of L. In this case, the free abelian group

H = H1(XL; Z)/TorsH1(XL; Z) = H1(XL; Z)

has a preferred basis given by the oriented meridians of L. The choice of this basis
induces an identification

Z[H] = Z[t±1 , . . . , t
±
b ]

which is implicit in the sequel.

Definition 2.9. The Alexander function of L is the Alexander function of its exterior:

A(L) := A(XL) ∈ Q(t1, . . . , tb)/∼
and the Alexander polynomial of L is the Alexander polynomial of its exterior:

∆L := ∆XL ∈ Z[t±1 , . . . , t
±
b ]/∼
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Here, the equivalence relation v ∼ w identifies two rational fractions v and w such that
v/w = ±tk11 · · · t

kb
b for some k1, . . . , kb ∈ Z.

Quite often in the litterature, ∆L is called the multivariable Alexander polynomial of
L, while the Alexander polynomial of L then refers to the reduction of ∆L obtained by
setting t := t1 = · · · = tb.

Example 2.10. The Alexander polynomial of a link L can be easily computed from
any of its diagram presentations. Indeed, we can apply Theorem 2.7 to the Wirtinger
presentation of π1(XL) given by that diagram. For example, let us consider the Hopf
link with its two possible orientations:

1

2 1

2
H+ H−

In the two case, the Wirtinger method gives

π1(XH±) =
〈
x1, x2 | [x1, x2]

〉
where [x1, x2] = x1x2x

−1
1 x−1

2 . We have

∂[x1, x2]
∂x1

= 1− x1x2x
−1
1 and

∂[x1, x2]
∂x2

= x1 − [x1, x2].

Thus, the Alexander matrix reduced to Z[t±1 , t
±
2 ] is the row matrix (1− t2, t1−1) so that

∆H± = gcd{t1 − 1, t2 − 1} = 1 ∈ Z[t±1 , t
±
2 ]/∼ .

�

Proposition 2.11. The Alexander function of the b-component link L is given by

A(L) =
{

∆L if b ≥ 2
∆L/(t1 − 1) if b = 1.

Proof. The exterior of the link L, as any compact 3-manifold with boundary, can be
collapsed to a 2-dimensional CW-complex. So, we can apply Lemma 2.5. �

It follows from Proposition 2.11 that, in dimension three, the Alexander function is
equivalent to the Alexander polynomial. Nonetheless, as emphasized by Milnor and
Turaev, the Alexander function is more “natural” than the Alexander polynomial since
the classical properties of the latter for links in S3 can be generalized to the former in
any dimension. This “naturality” of the Alexander function is illustrated in the next
section.

3. The Milnor torsion

Following Milnor and Turaev, we now interpret the Alexander function as a kind of
Reidemeister torsion.
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3.1. The torsion of a based acyclic chain complex. Let F be a commutative field,
and let C be a finite-dimensional chain complex over F:

C =
(

0→ Cm
∂m−→ Cm−1

∂m−1−→ · · · ∂2−→ C1
∂1−→ C0 → 0

)
.

We assume that C is acyclic and based in the sense that we are given a basis ci of Ci
for each i = 0, . . . ,m.

We denote by Bi ⊂ Ci the image of ∂i+1 and, for each i, we choose a basis bi of Bi.
The short exact sequence of F-vector spaces

0→ Bi −→ Ci
∂i−→ Bi−1 → 0

shows that we can obtain a new basis of Ci by taking, first, the vectors of bi and, second,
some lifts b̃i−1 of the vectors bi−1. We denote by bib̃i−1 this new basis, and we compare
it to ci by computing

[bibi−1/ci] := det
(

matrix expressing
bib̃i−1 in the basis ci

)
∈ F \ {0}.

This scalar does not depend on the choice of the lift b̃i−1 of bi−1, which justifies our
notation.

Definition 3.1. The torsion of C is

τ(C) =
m∏
i=0

[bibi−1/ci](−1)i+1 ∈ F \ {0}.

One easily checks that τ(C) does not depend on the choice of b0, . . . , bm.

The torsion of a finite-dimensional chain complex C to be defined needs C to be
acyclic, and so it needs the Euler characteristic of C

χ(C) =
m∑
i=0

(−1)i · dim(Ci) ∈ Z

to vanish. Thus, τ(C) is a “secondary” invariant with respect to χ(C), and the former
can be seen as a multiplicative analogue of the latter. Keeping in mind this analogy, let
us state some of the most important properties of the torsion. We refer to the book [22]
for proofs.

Firstly, the Euler characteristic is additive in the sense that

χ(C1 ⊕ C2) = χ(C1) + χ(C2).

Similarly, the torsion is multiplicative.

Theorem 3.2 (Multiplicativity). Let C1, C2 be finite-dimensional acyclic based chain
complexes over F. If their direct sum C1 ⊕ C2 is based in the canonical way, then we
have1

τ(C1 ⊕ C2) = ±τ(C1) · τ(C2).

Secondly, the Euler characteristic behaves well with respect to duality in the sense
that

χ(C∗) = (−1)m · χ(C).

1The sign can be resolved in this formula [22].
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Here, C∗ is the dual chain complex of C

C∗ =
(

0→ C∗m
∂∗m−→ C∗m−1

∂∗m−1−→ · · ·
∂∗2−→ C∗1

∂∗1−→ C∗0 → 0
)

defined by C∗i := Hom(Cm−i,F) and ∂∗i := (−1)i · Hom(∂m−i+1,F). The torsion enjoys
a similar property.

Theorem 3.3 (Duality). Let C be a finite-dimensional acyclic based chain complex over
F. If the dual chain complex C∗ is equipped with the dual basis, then we have2

τ(C∗) = ±τ(C)(−1)m+1
.

Finally, the Euler characteristic can be computed homologically by the classical for-
mula χ(C) = χ(H∗(C)). If F = Q(R) is the field of fractions of a domain R, and if
C = Q(R)⊗RD is the localization of a chain complex D over R, this formula takes the
form

χ
(
Q(R)⊗R D

)
=

m∑
i=0

(−1)i · rankHi(D).

There is a multiplicative analogue of this identity for the torsion.

Theorem 3.4 (Homological computation). Let R be a noetherian unique factorization
domain, and let D be a finitely-generated free chain complex over R, which is based and
such that rankHi(D) = 0 for each i. Then, we have

τ
(
Q(R)⊗R D

)
=

m∏
i=0

(ordHi(D))(−1)i+1

∈ (Q(R) \ {0})/R×.

This theorem is due to Milnor when R is a principal ideal domain [12], and to Turaev
in the general case [20].

3.2. The Milnor torsion of a finite connected CW-complex. Let X be a finite
connected CW-complex, and let

ϕ : Z[π1(X)] −→ F

be a ring homomorphism with values in a commutative field. We consider the cellular
chain complex of X of with ϕ-twisted coefficients

Cϕ(X) := F⊗Z[π1(X)] C(X̃)

where X̃ denotes the universal covering space of X. This is a finite-dimensional chain
complex over F whose homology

Hϕ
∗ (X) := H∗ (Cϕ(X))

may be trivial, or may be not.
Let Ξ be the set of cells of X. For each σ ∈ Ξ, we choose a lift σ̃ to X̃, and we denote

by Ξ̃ the set of the lifted cells. We also put a total ordering on the finite set Ξ, and
we choose an orientation of each cell σ ∈ Ξ: This double choice (ordering+orientation)
is denoted by oo. The choice of Ξ̃ combined to oo induces a basis Ξ̃oo of C(X̃), which
defines itself a basis 1⊗ Ξ̃oo of Cϕ(X).

2Again, the sign can be fixed in this formula [22].



9

Definition 3.5. The Reidemeister torsion with ϕ-twisted coefficients of X is

τϕ(X) := τ
(
Cϕ(X) based by 1⊗ Ξ̃oo

)
∈ F/± ϕ(π1(X))

with the convention that τϕ(X) := 0 if Hϕ
∗ (X) 6= 0.

Here, the multiplicative indeterminacy ±ϕ(π1(X)) comes from the choices that we have
had to make.

Remark 3.6. In Definition 3.5, we are restricting to the Reidemeister torsion with
coefficients in a commutative field F. The same construction applies to a ring homo-
morphism

ϕ : Z[π1(X)] −→ Λ

with values in a ring for which the rank of free modules is well-defined. Then, the
Reidemeister torsion τϕ(X) is defined in K1(Λ)/± ϕ(π1(X)) ∪ {0}, where K1(Λ) is the
abelianization of GL(Λ). �

It is not too difficult, although technical, to prove that the Reidemeister torsion is
invariant under cellular subdivisions. A theorem by Chapman states that, in fact, the
Reidemeister torsion is invariant under homeomorphisms, i.e. is a topological invariant
[4]. We also emphasize that, in general, the Reidemeister torsion is not a homotopy
invariant, and, historically, this is the raison d’être of the Reidemeister torsion. Indeed,
Reidemeister introduced his invariant in order to give a topological classification of 3-
dimensional lens spaces [15], for which homotopy invariants do not suffice.

We now specialize to the case of a ring homomorphism ϕ : Z[π1(X)] −→ F for which
it turns out that τϕ is a homotopy invariant. As in §2.2, we denote by

H := H1(X; Z)/TorsH1(X; Z)

the torsion-free abelianization of π1(X). We consider the ring homomorphism

µ : Z[π1(X)] −→ Q(Z[H])

obtained by composing the canonical projection Z[π1(X)] → Z[H] with the inclusion
Z[H]→ Q(Z[H]).

Definition 3.7. The Milnor torsion of X is

τµ(X) ∈ Q(Z[H])/±H.

As an application of the homological computation of torsions (Theorem 3.4), we get
the following result. This is the close connection between the Alexander polynomial and
the Reidemeister torsion that we evoked in the introduction.

Theorem 3.8 (Milnor [11, 12], Turaev [20]). The Milnor torsion coincides with the
Alexander function:

τµ(X) = A(X).

In particular, it follows that the Milnor torsion is a homotopy invariant, which can be
computed homologically.

Conversely, the algebraic theory of torsions can be applied to study the Alexander
function. For example, the duality of torsions (Theorem 3.3) and their multiplicativity
(Theorem 3.2) have the following consequence. This is the “expression” of the Poincaré
duality at the level of Milnor torsions.
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Theorem 3.9 (Franz [8], Milnor [11]). Let M be a compact connected orientable PL
manifold, and let H be the torsion-free abelianization of π1(M). If dim(M) is odd, then
we have

τµ(M) = τµ(M) · τµ◦i](∂M) ∈ Q (Z[H]) /±H.
If dim(M) is even and if Hµ

∗ (M) = 0, then we have

τµ(M) · τµ(M) = τµ◦i](∂M) ∈ Q (Z[H]) /±H.
Here, i] : Z[π1(∂M)] → Z[π1(M)] is induced by the inclusion i : ∂M → M , and the
overline · : Q (Z[H])→ Q (Z[H]) is the ring homomorphism defined by h := h−1 for all
h ∈ H.

3.3. The Milnor torsion of a link. Let L be a b-component ordered oriented link L
in S3. Theorem 3.9 can be applied to the exterior of L in S3

XL = S3 \ int N(L).

This results into a property for the Alexander function of the link L, which Proposition
2.11 translates into a property for the Alexander polynomial of L:

Theorem 3.10. (Seifert [17], Torres [18]) The Alexander polynomial of the link L is
symmetric:

∆L(t−1
1 , . . . , t−1

b ) = ∆L(t1, . . . , tb) ∈ Z[t±1 , . . . , t
±
b ]/∼ .

This is one of the classical properties of the Alexander polynomial that one can re-prove
(and, simultaneously, extend to a more general context) using the theory of Reidemeister
torsions. See [20, §1] for more properties.

4. The Conway function

The Conway function is a refinement of the Alexander function, which satisfies certain
additive properties. We conclude this talk by presenting Turaev’s construction of the
Conway function by means of a sign-refined Reidemeister torsion.

4.1. Turaev’s sign-refinement of the Reidemeister torsion. Let X be a finite
connected CW-complex, and let

ϕ : Z[π1(X)] −→ F
be a ring homomorphism with values in a commutative field. The Reidemeister torsion
introduced in §3.2

τϕ(X) ∈ F/± ϕ(π1(X))
has two kinds of indeterminacy : a sign ±1 and the image by ϕ of an element of π1(X).
Those two indeterminacies have been resolved by Turaev using two kinds of additional
structures, introduced in [20] and [21] respectively.

The ϕ(π1(X)) indeterminacy can be fixed if X is equipped with an Euler structure.
This is the homology class of a singular 1-chain c in X whose boundary satisfies

∂c =
∑
σ∈Ξ

(−1)dim(σ) · (center of σ)

where Ξ denotes the set of cells of X. Thus, Euler structures exist if and only if we
have3 χ(X) = 0, and the group H1(X; Z) acts freely and transitively on the set of Euler

3If χ(X) 6= 0, then we must have Hϕ
∗ (X) 6= 0 so that τϕ(X) = 0 by convention, and there is no

ambiguity to eliminate.
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structures. When X is a closed smooth manifold, Euler structures can be interpreted
as “punctured” homotopy classes of non-singular vector fields on X. In dimension 3,
Euler structures can also be regarded as Spinc-structures, and this is the place where
Seiberg–Witten theory intersects the theory of Reidemeister torsions. Thus, resolving
the ϕ(π1(X)) indeterminacy leads to rich mathematics. However, we will not need to
resolve it in this talk, and we simply refer to [22] for an introduction to that subject
and to the references therein for details.

The resolution of the sign indeterminacy can be sketched as follows. From the defi-
nition of τϕ(X), we see that its ±1 ambiguity comes from the choice of a total ordering
on Ξ and the choice of an orientation for each cell σ ∈ Ξ. Those choices, which were
denoted by oo in §3.2, occur at the level of X so that they also induce a preferred basis of
C(X; R), the cellular chain complex of X with real coefficients. Since (−1) · (−1) = +1,
the following quantity does not depend on the choice oo:

τϕ0 (X) := sgn τ
(
C(X; R) based by oo ?

)
· τ
(
Cϕ(X) based by 1⊗ Ξ̃oo

)
∈ F/ϕ(π1(X)).

But, the chain complex C(X; R) being not acyclic, its torsion is not defined, hence our
interrogation mark. Fortunately, the definition of an acyclic based chain complex C over
a field F given in §3.1 extends easily to the case where H∗(C) 6= 0. For this, the chain
complex C should be not only based, but also homologically based, which means that
we are given a basis hi of Hi(C) for each i. The torsion of C with homological basis
h := (h0, . . . , hm) is then denoted by

τ(C;h) ∈ F \ {0}.

In the context of CW-complexes, this leads to the following definition: A homological
orientation of X is an orientation of the R-vector space H∗(X; R).

Definition 4.1. The sign-refined Reidemeister torsion with ϕ-twisted coefficients of X,
equipped with the homological orientation ω, is

τϕ0 (X;ω) := sgn τ
(
C(X; R) based by oo ;h

)
· τ
(
Cϕ(X) based by 1⊗ Ξ̃oo

)
∈ F/ϕ(π1(X))

where h is a basis of H∗(X; R) which represents the orientation ω.

It is easily checked that τϕ0 (X;ω) does not depend on the choice of h ∈ ω.

4.2. Construction of the Conway function. We now sketch how to construct the
Conway function using the sign-refinement of the Reidemeister torsion.

Definition 4.2. A Conway function associates to any b-component ordered oriented link
L = (L1, . . . , Lb) in S3 a rational fraction

∇L ∈ Q(t1, . . . , tb)

which is invariant under ambiant isotopies of L, and satisfies the following axioms:

(1) For the unknot U , ∇U = 1/(t1 − t−1
1 ).

(2) If b ≥ 2, then ∇L ∈ Z[t±1 , . . . , t
±
b ].

(3) The reduced Conway function defined by

∇̃L(t) := ∇L(t, . . . , t) ∈ Q(t)

is invariant under re-numbering of the components of L.
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(4) (Conway identity) We have the following additive relation between links L+, L−, L0

which only differ within a ball as shown:

∇̃L+ − ∇̃L− =
(
t− t−1

)
· ∇̃L0

where

L+ =
??�������

???

__???
, L− =

���

??���
__???????

and L0 =
cc ;;

.

(5) (Doubling identity) If a link C is obtained from a link L by (2, 1)-cabling its
component Li, then we have the following multiplicative relation:

∇C(t1, . . . , tb) = (T + T−1) · ∇L(t1, . . . , ti−1, t
2
i , ti+1, . . . , tb)

where T = ti
∏
j 6=i t

lk(Li,Lj)
j .

Note that the Conway identity is local in contrast with the doubling identity, which is
global. The Conway identity being additive, it is crucial that the Conway function is
defined without multiplicative indeterminacy.

Remark 4.3. The Conway identity given here is the first of the three local identities
revealed by Conway in his paper [5]. As shown by Murakami [14, 13], the Conway
function is determined by 6 local relations. �

Theorem 4.4 (Conway [5]). The Conway function exists, and is unique.

The first complete proof of this theorem is due to Hartley [9].

Sketch of Turaev’s proof [20]. The proof of the unicity goes as follows. Let ∇ and ∇′ be
two Conway functions, with reduction ∇̃ and ∇̃′ respectively. By (1), ∇̃ − ∇̃′ vanishes
for the unknot and, by (4), it vanishes on the unlink with b ≥ 2 components: So, ∇̃−∇̃′
vanishes for any unlink. Since any link L can be transformed to the unlink by a finite
number of crossing changes, we can use (4) again to show that ∇̃L = ∇̃′L for any link L.
Finally, we assume that ∇L 6= ∇′L for some b-component link L. This means that we
can find some c1, . . . , cb ∈ N such that

(4.1) ∇L(t2
c1
, . . . , t2

cb ) 6= ∇′L(t2
c1
, . . . , t2

cb ).

Let C be the link obtained from L by (2, 1)-cabling its i-th component ci times, for each
i = 1, . . . , b. Then, by (5), we have

∇̃C(t) = α · ∇L(t2
c1
, . . . , t2

cb ) and ∇̃′C(t) = α · ∇′L(t2
c1
, . . . , t2

cb )

where α is a product of elements of Z[t±] which augment to 2, so that α 6= 0. Then,
(4.1) contradicts the fact that ∇̃C(t) = ∇̃′C(t).

The proof of the existence starts as follows. Let XL = S3 \ int N(L) be the exterior of
the link L. It has a preferred homological orientation ωL represented by the following
basis of H∗(XL; R):

([?], [m1], . . . , [mb], [T1], . . . , [Tb−1]) .

Here, [?] ∈ H0(XL; R) is the homology class of a point ? ∈ XL, [mi] ∈ H1(XL; R) is the
homology class of an oriented meridian mi of Li and [Tj ] ∈ H2(XL; R) is the homology
class of Tj := ∂N(Lj), with the orientation inherited from S3. We pick a representant

RL ∈ Q(t1, . . . , tb)
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of the sign-refined Milnor torsion

τµ0 (XL;ωL) ∈ Q(Z[H])/H.

By Theorem 3.3, we have4

(4.2) RL
(
t−1
1 , . . . , t−1

b

)
= εm ·RL (t1, . . . , tb)

where ε = ±1 and m is a monomial in t±1
1 , . . . , t±1

b . Then, we set

∇L(t1, . . . , tb) := −m ·RL
(
t21, . . . , t

2
b

)
∈ Q(t1, . . . , tb).

This quantity is well-defined. Indeed, let R′L be another representant of the sign-refined
Milnor torsion of (XL, ωL), to which Theorem 3.3 also applies:

(4.3) R′L
(
t−1
1 , . . . , t−1

b

)
= ε′m′ ·R′L (t1, . . . , tb)

There is a monomial n in t±1
1 , . . . , t±1

b such that R′L = n ·RL. Comparing (4.2) to (4.3),
we obtain m = m′ · n2 so that

−m ·RL
(
t21, . . . , t

2
b

)
= −m′ · n2RL

(
t21, . . . , t

2
b

)
= −m′ ·R′L

(
t21, . . . , t

2
b

)
.

Finally, we have to check that each of the five axioms is satisfied. (1) is easily checked,
(2) follows from Proposition 2.11, (3) follows from the fact that ωL is unchanged if the
components of L are re-numbered and (5) can be proved using the multiplicativity of
torsions. The difficult part is the verification of axiom (4): See [20, §4]. �

It follows from the above construction of the Conway function that this determines
the Alexander polynomial through the formulas:

∆L(t21, . . . , t
2
b) ∼

{
∇L(t1) · (t1 − t−1

1 ) if b = 1
∇L(t1, . . . , tb) if b ≥ 2.

But, the converse is false: The Conway function is strictly stronger than the Alexander
polynomial for links with at least 2 components.

Example 4.5. Let H± be the oriented Hopf link with linking number ±1. On the one
hand, it is easily deduced from Conway’s identity that

∇̃H+ = +1 ∈ Q(t) and ∇̃H− = −1 ∈ Q(t).

On the other hand, we have computed in Example 2.10 that

∆H± = 1 ∈ Q(t1, t2)/∼ .

Thus, ∇ distinguishes H+ from H− in contrast with ∆. �

4The sign ε can be determined as well as the parity of the monomial m: According to Torres and Fox
[18, 19], we have ε = (−1)b and m = tν11 · · · t

νb
b where νi ≡ 1+

P
j 6=i lk(Li, Lj) mod 2, and all this can be

re-proved using the duality of torsions. More precisely, Theorem 3.3 can be refined to take into account
homological orientations and Euler structures, and the monomial m which appears is then interpreted
as the Chern class of the Euler structure corresponding to the representant RL. See [23].
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