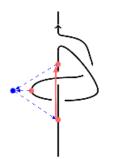
(High-dimensional) Alexander polynomial(s) and diagram counts.

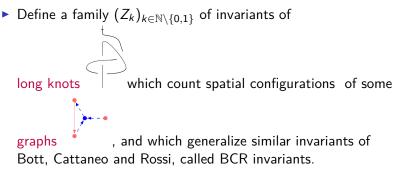
David Leturcq RIMS

April 29th 2020



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Goal of the talk



(日本)(同本)(日本)(日本)(日本)

Goal of the talk

▶ Define a family (Z_k)_{k∈ℕ\{0,1}} of invariants of

long knots which count spatial configurations of some graphs , and which generalize similar invariants of Bott, Cattaneo and Rossi, called BCR invariants.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goal of the talk

- ▶ Define a family (Z_k)_{k∈ℕ\{0,1}} of invariants of long knots which count spatial configurations of some graphs, and which generalize similar invariants of Bott, Cattaneo and Rossi, called BCR invariants.
- ▶ Give flexible definitions of *Z*_k.
- Compute Z_k, and get formulas for Z_k in terms of Alexander polynomials:

$$\sum_{d=1}^{n} (-1)^{d+1} \operatorname{Ln} \left(\Delta_{d,\psi}(e^h) \right) = (-1)^n \sum_{k \ge 2} Z_k(\psi) h^k$$

In particular, when n = 1: $\operatorname{Ln}\left(\Delta_{\psi}(e^{h})\right) = -\sum_{k>2} Z_{k}(\psi)h^{k}$

Plan

Original definition of BCR invariants

Propagators

BCR invariants from propagators

Explicit formulas for BCR invariants

Ideas about the proof

Even-dimensional case

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Studied knots and spaces

$$B_{\infty}^{\circ} = \mathbb{R}^{n+2} \setminus \mathbb{B}^{n+2}$$

 $|\psi(\mathbb{R}^n)$ Long knots of \mathbb{R}^{n+2} : smooth embeddings such that for any $x \in \mathbb{R}^n$, if $||x|| \ge 1$, then $\psi(x) = (0, 0, x) \in B_{\infty}^{\circ}$. Asymptotic homology \mathbb{R}^{n+2} : A smooth manifold $M^{\circ} = B(M) \cup B_{\infty}^{\circ}$, where B(M) is a compact manifold with the homology of an (n+2)-ball, $\partial B(M) = \mathbb{S}^{n+1}$ and B_{∞}° is the complement of the unit ball \mathbb{B}^{n+2} of \mathbb{R}^{n+2} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Studied knots and spaces

 $B^{\circ}_{\infty} = \mathbb{R}^{n+2} \setminus \mathbb{B}^{n+2}$ $\psi(\mathbb{R}^n)$ **Long knots** of M° : smooth embeddings $\psi \colon \mathbb{R}^n \hookrightarrow M^\circ$ such that for any $x \in \mathbb{R}^n$, if $||x|| \ge 1$, then $\psi(x) = (0, 0, x) \in \underline{B}^{\circ}_{\infty}.$ **Asymptotic homology** \mathbb{R}^{n+2} : A smooth manifold $M^{\circ} = B(M) \cup B^{\circ}_{\infty}$, where B(M) is a compact manifold with the homology of an (n+2)-ball, $\partial B(M) = \mathbb{S}^{n+1}$ and B_{∞}° is the complement of the unit ball \mathbb{B}^{n+2} of \mathbb{R}^{n+2} . **Parallelization** of M° : a diffeomorphism $\tau: M^{\circ} \times \mathbb{R}^{n+2} \to T M^{\circ}$. that agrees with the usual trivialization of $T\mathbb{R}^{n+2}$ on $B^{\circ}_{\infty} \times \mathbb{R}^{n+2}$.

BCR diagrams

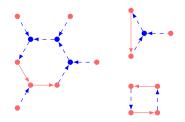


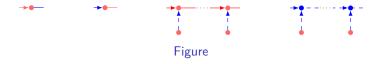
Figure: Example of one degree 5 and two degree 2 BCR diagrams

Notations:

- internal vertices: $V_i(\Gamma) = \{ \text{red dots } \bullet \},\$
- ► external vertices: V_e(Γ) = {blue dots •},
- internal edges: $E_i(\Gamma) = \{\text{red arrows} \longrightarrow \},\$
- external edges: $E_e(\Gamma) = \{ \text{dashed blue arrows}^{--} \}$.

BCR diagrams

A degree k <u>BCR</u> diagram is a connected graph $\Gamma = (V(\Gamma), E(\Gamma))$ with 2k vertices of two kinds and 2k edges of two kinds obtained as a cyclic sequence of some of the following pieces.



Notations:

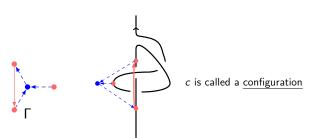
- internal vertices: $V_i(\Gamma) = \{ \text{red dots } \bullet \},\$
- external vertices: $V_e(\Gamma) = \{ blue dots \bullet \},\$
- internal edges: $E_i(\Gamma) = \{\text{red arrows} \longrightarrow \},\$
- external edges: $E_e(\Gamma) = \{ \text{dashed blue arrows}^{--+} \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Configurations

For any BCR diagram Γ , set

$$C_{\Gamma}(\psi) = \{ c \colon V(\Gamma) \hookrightarrow M^{\circ} \mid c(V_{i}(\Gamma)) \subset \psi(\mathbb{R}^{n}) \}.$$



If $M^\circ = \mathbb{R}^{n+2}$, there exists natural

- "internal direction" maps G_e: C_Γ(ψ) → Sⁿ⁻¹ for any internal edge e
- ► "external direction" maps G_e: C_Γ(ψ) → Sⁿ⁺¹ for any external edge e

Bott-Cattaneo-Rossi invariants in \mathbb{R}^{n+2}

Assume $n \ge 3$ is odd. Set $\omega(\Gamma, \psi) = \bigwedge_{e \in E_i(\Gamma)} G_e^*(\omega_{n-1}) \wedge \bigwedge_{e \in E_e(\Gamma)} G_e^*(\omega_{n+1}), \text{ where } \omega_{n\pm 1} \text{ is the}$ homogeneous volume form of volume one on $\mathbb{S}^{n\pm 1}$. Set $\operatorname{vol}(\Gamma, \psi) = \int_{\mathcal{C}_{\Gamma}(\psi)} \omega(\Gamma, \psi)$, and

$$Z_k(\psi) = \sum_{\Gamma \text{degree } k \text{ BCR diagram}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \operatorname{vol}(\Gamma, \psi)$$

Theorem (Bott 96, Cattaneo, Rossi '05) For odd $n \ge 3$, Z_k is an invariant for long knots $\mathbb{R}^n \hookrightarrow \mathbb{R}^{n+2}$.

Theorem (Watanabe, '07)

For odd $n \ge 3$, Z_k is non-trivial if and only if k is even. Furthermore, Z_k is a polynomial in Alexander polynomial coefficients for long ribbon knots.

Bott-Cattaneo-Rossi invariants in \mathbb{R}^{n+2}

Assume $n \ge 3$ is odd. Set $\omega(\Gamma, \psi) = \bigwedge_{e \in E_i(\Gamma)} G_e^*(\omega_{n-1}) \wedge \bigwedge_{e \in E_e(\Gamma)} G_e^*(\omega_{n+1}), \text{ where } \omega_{n\pm 1} \text{ is the}$ homogeneous volume form of volume one on $\mathbb{S}^{n\pm 1}$. Set $\operatorname{vol}(\Gamma, \psi) = \int_{C_{\Gamma}(\psi)} \omega(\Gamma, \psi)$, and

$$Z_k(\psi) = \sum_{\mathsf{F} ext{degree } k \text{ BCR diagram}} rac{1}{|\operatorname{Aut}(\mathsf{F})|} \mathrm{vol}(\mathsf{F},\psi)$$

Theorem

When $n \equiv 1 \mod 4$, for any long knot ψ ,

$$\sum_{d=1}^{n} (-1)^{d+1} \mathrm{Ln}\left(\Delta_{d,\psi}(e^{h})\right) = -\sum_{k\geq 2} Z_{k}(\psi) h^{k},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where $\Delta_{d,\psi}(t)$ is the d-th Alexander polynomial of ψ .

Plan

Original definition of BCR invariants

Propagators

BCR invariants from propagators

Explicit formulas for BCR invariants

Ideas about the proof

Even-dimensional case

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Propagators

Let X be an asymptotic homology \mathbb{R}^d and $\tau \colon X \times \mathbb{R}^d \to TX$ a parallelization of X.

There exists a compactification $C_2(X)$ of $C_2^0(X) = (X \times X) \setminus \text{diag}$, and a "natural" Gauss map $G_\tau \colon \partial C_2(X) \to \mathbb{S}^{d-1}$. A <u>propagator</u> of (X, τ) is a (d + 1)-chain $P = P^{d+1}$ of $C_2(X)$ whose boundary reads $\partial P = \frac{1}{2}G_\tau^{-1}(\{-u, +u\}\})$ for some $u \in \mathbb{S}^{d-1}$. When $X = \mathbb{R}^d$ with its canonical parallelization, an example of propagator is

$$P_u = \frac{1}{2} \overline{\{(x, x + tu) \mid t \in \mathbb{R}^*, x \in \mathbb{R}^d\}}$$

(日)(1)(

Example of use of propagators

Given two disjoint cycles a^p and z^{d-1-p} of X, their linking number is defined as

$$\operatorname{lk}(a,z) = \langle A^{p+1}, z^{d-1-p} \rangle_X,$$

where $\partial A^{p+1} = a^p$.

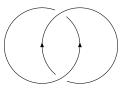


Figure: Two circles of \mathbb{R}^3 with linking number 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example of use of propagators

Given two disjoint cycles a^p and z^{d-1-p} of X, their linking number is defined as

$$\operatorname{lk}(a,z) = \langle A^{p+1}, z^{d-1-p} \rangle_X,$$

where $\partial A^{p+1} = a^p$.

Lemma

For any propagator P (and any given parallelization τ of X),

$$\operatorname{lk}(a,z) = \langle a^p \times z^{d-1-p}; P^{d+1} \rangle_{C_2(X)}.$$

Idea for the following: $a \times z \leftarrow$ configuration space Intersection with $P \leftarrow$ intersection with propagators associated with each edge.

Propagators

An <u>internal propagator</u> is a propagator A for \mathbb{R}^n with its canonical parallelization. (It is an (n + 1)-chain of $C_2(\mathbb{R}^n)$) An <u>external propagator</u> is a propagator B for (M°, τ) . (It is an (n + 3)-chain of $C_2(M^\circ)$) **Important example :** $M^\circ = \mathbb{R}^{n+2}$, τ canonical parallelization, $u \in \mathbb{S}^{n-1}$, $v \in \mathbb{S}^{n+1}$

$$A = \frac{1}{2} \overline{\left\{ (x, y) \in C_2(\mathbb{R}^n) \left| \frac{y - x}{||y - x||} = \pm u \right\}},$$

$$B=\frac{1}{2}\overline{\left\{(x,y)\in C_2(\mathbb{R}^{n+2})\left|\frac{y-x}{||y-x||}=\pm v\right\}},$$

Idea: Propagators will be used as constraints on the edges.

Plan

Original definition of BCR invariants

Propagators

BCR invariants from propagators

Explicit formulas for BCR invariants

Ideas about the proof

Even-dimensional case

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Diagram counts

Given a degree k BCR diagram Γ , a bijection $\sigma: E(\Gamma) \rightarrow \{1, \dots, 2k\}$, and 2k internal and external propagators $F = (A_i, B_i)_{i \in \{1, \dots, 2k\}}$, for any $e = (v, w) \in E(\Gamma)$, set

$$p_e \colon c \in C_{\Gamma}(\psi) \mapsto \begin{cases} (\psi^{-1}(c(v)), \psi^{-1}(c(w))) \in C_2(\mathbb{R}^n) & \text{if } e \text{ is internal.} \\ (c(v), c(w)) \in C_2(M^\circ) & \text{if } e \text{ is external,} \end{cases}$$

and

$$D_{e,\sigma} = \begin{cases} p_e^{-1}(A_{\sigma(e)}) & \text{if } e \text{ is internal,} \\ p_e^{-1}(B_{\sigma(e)}) & \text{if } e \text{ is external.} \end{cases}$$

For a generic choice of propagators, the algebraic intersection number $I^{F}(\Gamma, \sigma, \psi)$ of the $(D_{e,\sigma})_{e \in E(\Gamma)}$ in $C_{\Gamma}(\psi)$ makes sense. It is the "algebraic number of configurations of the diagram with edges constrained by the propagators". BCR invariants:

$$Z_k^F(\psi,\tau) = \frac{1}{(2k)!} \sum_{(\Gamma,\sigma)} I^F(\Gamma,\sigma,\psi)$$

Theorem 1

Assume that *n* is odd, (M°, τ) is a parallelized asymptotic homology \mathbb{R}^{n+2} , and ψ is a long knot. $Z_k^F(\psi, \tau)$ is invariant under

- changes of $F = (A_i, B_i)_{i \in \{1,...,2k\}}$,
- changes of τ,
- ► left-composition of ψ by diffeomorphisms of M° that fix B_∞^o pointwise.

 $Z_k(\psi) = Z_k^F(\psi, \tau)$ is called the degree k generalized BCR invariant of ψ .

BCR invariants:

$$Z_k^F(\psi,\tau) = \frac{1}{(2k)!} \sum_{(\Gamma,\sigma)} I^F(\Gamma,\sigma,\psi)$$

Theorem 1

Assume that *n* is odd, (M°, τ) is a parallelized asymptotic homology \mathbb{R}^{n+2} , and ψ is a long knot. $Z_k^F(\psi, \tau)$ is invariant under

- changes of $F = (A_i, B_i)_{i \in \{1,...,2k\}}$,
- changes of τ,
- ► left-composition of ψ by diffeomorphisms of M° that fix B_∞^o pointwise.

 $Z_k(\psi) = Z_k^F(\psi, \tau)$ is called the degree k generalized BCR invariant of ψ . Furthermore,

- Z_k only takes rational values,
- $Z_k = 0$ for any odd k,
- Z_k is additive under connected sum,
- Z_k can be defined in non-parallelizable asymptotic homology \mathbb{R}^{n+2} .

Plan

Original definition of BCR invariants

Propagators

BCR invariants from propagators

Explicit formulas for BCR invariants

Ideas about the proof

Even-dimensional case

・ロト・日本・日本・日本・日本・日本

Determination of Z_k

Definition

A long knot ψ is rectifiable if there exists τ such that $T_x\psi(u) = \tau(0, 0, \overline{u})$ for any $x, u \in \mathbb{R}^n$.

Theorem 2

For any rectifiable long knot ψ ,

$$\sum_{d=1}^{n} (-1)^{d+1} \mathrm{Ln}\left(\Delta_{d,\psi}(e^{h})\right) = -\sum_{k\geq 2} Z_{k}(\psi) h^{k},$$

where $\Delta_{d,\psi}(t)$ is the d-th Alexander polynomial of ψ .

Corollary

For any long knot ψ of an asymptotic homology \mathbb{R}^3 ,

$$\operatorname{Ln}\left(\Delta_{\psi}(e^{h})\right) = -\sum_{k\geq 2} Z_{k}(\psi)h^{k}.$$

Formula in terms of linking numbers

Fix :

- a rectifiable knot ψ (or any knot if $n \equiv 1 \mod 4$),
- a Seifert (hyper)surface Σ for ψ ($\partial \Sigma = \psi(\mathbb{R}^n)$),
- for $d \in \{1, \ldots, n\}$, two bases (a_i^d) and (z_i^d) of $H_d(\Sigma)$ with $\langle a_i^d, z_j^{n+1-d} \rangle = \delta_{i,j}$.

For a chain x of Σ , let x^+ (resp. x^-) denote the chain obtained by slightly pushing x along the positive (resp. negative) normal to Σ . Set $V_d^+ = \left(\text{lk}(z_i^d, (a_j^{n+1-d})^+) \text{ and } V_d^- = \left(\text{lk}(z_i^d, (a_j^{n+1-d})^-) \right)$.

Formula in terms of linking numbers

Fix :

- ▶ a rectifiable knot ψ (or any knot if $n \equiv 1 \mod 4$),
- a Seifert (hyper)surface Σ for ψ ($\partial \Sigma = \psi(\mathbb{R}^n)$),
- ► for $d \in \{1, ..., n\}$, two bases (a_i^d) and (z_i^d) of $H_d(\Sigma)$ with $\langle a_i^d, z_j^{n+1-d} \rangle = \delta_{i,j}$.

For a chain x of Σ , let x^+ (resp. x^-) denote the chain obtained by slightly pushing x along the positive (resp. negative) normal to Σ . Set $V_d^+ = \left(\operatorname{lk}(z_i^d, (a_j^{n+1-d})^+) \text{ and } V_d^- = \left(\operatorname{lk}(z_i^d, (a_j^{n+1-d})^-) \right)$. Theorem 3

$$Z_k(\psi) = \sum_{d=1}^n \sum_{\nu=1}^{k-1} (-1)^{d+1} \lambda_{k,\nu} \operatorname{Tr}\left(\left(V_d^+\right)^{\nu} \left(V_d^-\right)^{k-\nu}\right),$$

where

$$\lambda_{k,\nu} = \frac{1}{(k-1)!} \operatorname{Card}(\{\sigma \in \mathfrak{S}_{k-1} \mid \operatorname{Card}(\{i \mid \sigma(i) < \sigma(i+1)\} = \nu - 1\}).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Plan

Original definition of BCR invariants

Propagators

BCR invariants from propagators

Explicit formulas for BCR invariants

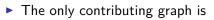
Ideas about the proof

Even-dimensional case

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Idea of the proofs

- Define some external propagators B associated to parallel Seifert surfaces :
 - (I) *B* does not depend on the knot "near" $\psi(\mathbb{R}^n) \times \psi(\mathbb{R}^n)$
 - (II) B meets ψ(ℝⁿ) × (M \ ψ(ℝⁿ)) as a meridian disk times the Seifert surface.
- Compute $Z_k(\psi) Z_k(\text{unknot})$.



- The "legs" determine the internal vertices and force the external vertices to belong to the parallel Seifert surfaces. (II)
- We are left with the intersection of a propagator with a product of surfaces.
- This yields the linking number formula of Theorem 3.
- ► Combinatorics and Theorem 3 imply Theorem 2.

Plan

Original definition of BCR invariants

Propagators

BCR invariants from propagators

Explicit formulas for BCR invariants

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ideas about the proof

Even-dimensional case

Even-dimensional case

- ► Any even-dimensional long knot in a parallelizable asymptotic homology ℝⁿ⁺² is rectifiable up to a connected sum.
- Theorem 1 holds when restricting to parallelizations adapted to the knot (next slide)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Even-dimensional case $Z_k^F(\psi, \tau) = \frac{1}{(2k)!} \sum_{(\Gamma, \sigma)} I^F(\Gamma, \sigma, \psi)$

Theorem 4

Assume: *n* is even, (M°, τ) is a parallelized asymptotic homology \mathbb{R}^{n+2} , and ψ is such that $T_{x}\psi(u) = \tau(0, 0, u)$ for any $x, u \in \mathbb{R}^{n}$. $Z_{k}^{F}(\psi, \tau)$ is invariant under

- ► changes of F = (A_i, B_i)_{i∈{1,...,2k}},
- changes of τ such that $T_x\psi(u) = \tau(0,0,u)$ for any $x, u \in \mathbb{R}^n$,
- ► left-composition of \u03c6 by diffeomorphisms of M° that fix B^o_∞ pointwise.

 $Z_k(\psi) = Z_k^F(\psi, \tau)$ is called the degree k generalized BCR invariant of ψ .

Even-dimensional case $Z_k^F(\psi, \tau) = \frac{1}{(2k)!} \sum_{(\Gamma, \sigma)} I^F(\Gamma, \sigma, \psi)$

Theorem 4

Assume: *n* is even, (M°, τ) is a parallelized asymptotic homology \mathbb{R}^{n+2} , and ψ is such that $T_{\times}\psi(u) = \tau(0, 0, u)$ for any $x, u \in \mathbb{R}^n$. $Z_k^F(\psi, \tau)$ is invariant under

- ► changes of F = (A_i, B_i)_{i∈{1,...,2k}},
- changes of τ such that $T_x\psi(u) = \tau(0,0,u)$ for any $x, u \in \mathbb{R}^n$,
- ► left-composition of \u03c6 by diffeomorphisms of M° that fix B^o_∞ pointwise.

 $Z_k(\psi) = Z_k^F(\psi, \tau)$ is called the degree k generalized BCR invariant of ψ . Furthermore,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- Z_k only takes rational values,
- $Z_k = 0$ for any odd even k,
- Z_k is additive under connected sum,
- Z_k can be defined for non-rectifiable long knots.

Even-dimensional case

- ► Any even-dimensional long knot in a parallelizable asymptotic homology ℝⁿ⁺² is rectifiable up to a connected sum.
- Theorem 1 holds when restricting to parallelizations adapted to the knot.
- The computations of Theorem 3 (linking number formulas) are still possible. This yields an analogue of Theorem 2 (up to a sign).

$$\sum_{d=1}^n (-1)^{d+1} \mathrm{Ln}\left(\Delta_{d,\psi}(e^h)\right) = + \sum_{k\geq 2} Z_k(\psi) h^k.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Further questions

- Get rid of the "rectifiability" hypothesis in the previous results.
- Extend the invariants to long knots in more general spaces.
- Extend the invariants to links (almost finished).
- Count more general diagrams. It could yield cohomology classes on the space of knots with values in a algebra A spanned by diagrams (up to some relations). (ok for lower degrees.)
- ► Get some non-trivial linear forms A → Q, similarly to weight systems coming from Lie algrebra representations.

Thank you for your attention !